We investigate the asymptotic behavior of solutions to a semilinear heat equation with homogeneous Neumann boundary conditions. It was recently shown that the nontrivial kernel of the linear part leads to the coexistence of fast solutions decaying to 0 exponentially (as time goes to infinity), and slow solutions decaying to 0 as negative powers of t. Here we provide a characterization of slow/fast solutions in terms of their sign, and we show that the set of initial data giving rise to fast solutions is a graph of codimension one in the phase space.

A concrete realization of the slow-fast alternative for a semilinear heat equation with homogeneous Neumann boundary conditions

Ghisi, Marina;Gobbino, Massimo;HARAUX, ALAIN
2018-01-01

Abstract

We investigate the asymptotic behavior of solutions to a semilinear heat equation with homogeneous Neumann boundary conditions. It was recently shown that the nontrivial kernel of the linear part leads to the coexistence of fast solutions decaying to 0 exponentially (as time goes to infinity), and slow solutions decaying to 0 as negative powers of t. Here we provide a characterization of slow/fast solutions in terms of their sign, and we show that the set of initial data giving rise to fast solutions is a graph of codimension one in the phase space.
2018
Ghisi, Marina; Gobbino, Massimo; Haraux, Alain
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/929991
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact