Three laboratory scale biofilters filled with different packing materials (peat and sieved sugarcane bagasse) and operating with different microbial cultures (allochthonous and autochthonous bacteria) were run and monitored in parallel to assess the emission rate of airborne bacteria in the biofiltration of benzene-contaminated air streams. The effect of the fluid dynamic and loading conditions on the rate of microbial emission in the air environment was investigated by performing continuous experiments at different inlet benzene concentrations and superficial gas velocities. The experiments prove that the concentration of airborne bacteria in the effluent air from lab-scale biofilters is only slightly higher than in the ambient air. The emission rate is not dependent on superficial gas velocity because of low shear stress exerted by the gas flow. On the other hand, the loading conditions have a strong effect on the emission rate, which increases with increasing growth and degradation rate, and different packing media show remarkably different behaviors. (c) 2005 Wiley Periodicals, Inc.

Detachment and emission of airborne bacteria in gas-phase biofilm reactors

NICOLELLA, CRISTIANO
2005-01-01

Abstract

Three laboratory scale biofilters filled with different packing materials (peat and sieved sugarcane bagasse) and operating with different microbial cultures (allochthonous and autochthonous bacteria) were run and monitored in parallel to assess the emission rate of airborne bacteria in the biofiltration of benzene-contaminated air streams. The effect of the fluid dynamic and loading conditions on the rate of microbial emission in the air environment was investigated by performing continuous experiments at different inlet benzene concentrations and superficial gas velocities. The experiments prove that the concentration of airborne bacteria in the effluent air from lab-scale biofilters is only slightly higher than in the ambient air. The emission rate is not dependent on superficial gas velocity because of low shear stress exerted by the gas flow. On the other hand, the loading conditions have a strong effect on the emission rate, which increases with increasing growth and degradation rate, and different packing media show remarkably different behaviors. (c) 2005 Wiley Periodicals, Inc.
2005
Zilli, M; Camogli, G; Nicolella, Cristiano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/93095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 20
social impact