The new paradigm in agriculture, sustainable intensification, is focusing back onto beneficial soil microorganisms, for the role played in reducing the input of chemical fertilizers and pesticides and improving plant nutrition and health. Worldwide, more and more attention is deserved to arbuscular mycorrhizal fungi (AMF), which establish symbioses with the roots of most land plants and facilitate plant nutrient uptake, by means of a large network of extraradical hyphae spreading from colonized roots to the surrounding soil and functioning as a supplementary absorbing system. AMF protect plants from biotic and abiotic stresses and are able to modulate the activity of antioxidant enzymes and the biosynthesis of secondary metabolites (phytochemicals), such as polyphenols, anthocyanins, phytoestrogens and carotenoids, that play a fundamental role in promoting human health. An increasing number of studies focused on the use of AMF symbionts for the production of functional food, with enhanced nutritional and nutraceutical value. Yet, while several plant species were investigated, only few AMF were utilized, thus limiting the full exploitation of their wide physiological and genetic diversity. Here, we will focus on AMF effects on the biosynthesis of plant secondary metabolites with health-promoting activity, and on the criteria for a finely tuned, targeted selection of the best performing symbionts, to be utilized as sustainable biotechnological tools for the production of safe and healthy plant foods.

Designing the Ideotype Mycorrhizal Symbionts for the Production of Healthy Food

Avio, Luciano
Primo
;
Turrini, Alessandra
Secondo
;
Giovannetti, Manuela
Penultimo
;
2018-01-01

Abstract

The new paradigm in agriculture, sustainable intensification, is focusing back onto beneficial soil microorganisms, for the role played in reducing the input of chemical fertilizers and pesticides and improving plant nutrition and health. Worldwide, more and more attention is deserved to arbuscular mycorrhizal fungi (AMF), which establish symbioses with the roots of most land plants and facilitate plant nutrient uptake, by means of a large network of extraradical hyphae spreading from colonized roots to the surrounding soil and functioning as a supplementary absorbing system. AMF protect plants from biotic and abiotic stresses and are able to modulate the activity of antioxidant enzymes and the biosynthesis of secondary metabolites (phytochemicals), such as polyphenols, anthocyanins, phytoestrogens and carotenoids, that play a fundamental role in promoting human health. An increasing number of studies focused on the use of AMF symbionts for the production of functional food, with enhanced nutritional and nutraceutical value. Yet, while several plant species were investigated, only few AMF were utilized, thus limiting the full exploitation of their wide physiological and genetic diversity. Here, we will focus on AMF effects on the biosynthesis of plant secondary metabolites with health-promoting activity, and on the criteria for a finely tuned, targeted selection of the best performing symbionts, to be utilized as sustainable biotechnological tools for the production of safe and healthy plant foods.
2018
Avio, Luciano; Turrini, Alessandra; Giovannetti, Manuela; Sbrana, Cristiana
File in questo prodotto:
File Dimensione Formato  
2018-fpls-09-01089.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 820.75 kB
Formato Adobe PDF
820.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/930995
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 88
social impact