The perceptual consequences of eye movements are manifold: Each large saccade is accompanied by a drop of sensitivity to luminance-contrast, low-frequency stimuli, impacting both conscious vision and involuntary responses, including pupillary constrictions. They also produce transient distortions of space, time, and number, which cannot be attributed to the mere motion on the retinae. All these are signs that the visual system evokes active processes to predict and counteract the consequences of saccades. We propose that a key mechanism is the reorganization of spatiotemporal visual fields, which transiently increases the temporal and spatial uncertainty of visual representations just before and during saccades. On one hand, this accounts for the spatiotemporal distortions of visual perception; on the other hand, it implements a mechanism for fusing pre- and postsaccadic stimuli. This, together with the active suppression of motion signals, ensures the stability and continuity of our visual experience.

Vision during saccadic eye movements

Binda, Paola;Morrone, Maria Concetta
2018-01-01

Abstract

The perceptual consequences of eye movements are manifold: Each large saccade is accompanied by a drop of sensitivity to luminance-contrast, low-frequency stimuli, impacting both conscious vision and involuntary responses, including pupillary constrictions. They also produce transient distortions of space, time, and number, which cannot be attributed to the mere motion on the retinae. All these are signs that the visual system evokes active processes to predict and counteract the consequences of saccades. We propose that a key mechanism is the reorganization of spatiotemporal visual fields, which transiently increases the temporal and spatial uncertainty of visual representations just before and during saccades. On one hand, this accounts for the spatiotemporal distortions of visual perception; on the other hand, it implements a mechanism for fusing pre- and postsaccadic stimuli. This, together with the active suppression of motion signals, ensures the stability and continuity of our visual experience.
2018
Binda, Paola; Morrone, Maria Concetta
File in questo prodotto:
File Dimensione Formato  
BindaMorrone_ARvisionscience_fullpdf.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 489.45 kB
Formato Adobe PDF
489.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/931022
Citazioni
  • ???jsp.display-item.citation.pmc??? 44
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 71
social impact