Cherries are known for their nutraceutical properties, in particular for their antioxidant ability due to their polyphenol content, which causes a reduction of cardiovascular disease (CVD) risk factors. However, once ingested these molecules are degraded in the Gastrointestinal (GI) tract before reaching the blood, which is the action site. The object of the present work is to evaluate the ability of cherry extract (CE), encapsulated in nanoparticles (NPs) based on different chitosan (Ch) derivatives, to promote a protective effect of human umbilical vein endothelial cells (HUVECs) involved in vascular dysfunction against oxidative stress. CE-loaded NPs based on quaternary ammonium chitosan (NP1) and an S-protected thiolated derivative thereof (NP2) were prepared. The mean particle size (NP1 344.9 ± 17.8, NP2 339.9 ± 68.2 nm), the polydispersity index, the encapsulation efficiency (NP1 78.4 ± 4.5, NP2 79.8 ± 0.6%), and the zeta potential (NP1 14.8 ± 0.3, NP2 15.8 ± 0.5 mV) did not appear to be significantly different. Both NP types improved the CE apparent permeation parameters with respect to the control. Conversely, CE-loaded NP2 protected HUVECs from oxidative stress and reduced reactive oxygen species (ROS) production more than CE-loaded NP1 and free CE. In addition to promoting HUVEC resistance, NP2 could be a useful tool to overcome the problem of cherry seasonality.

Chitosan-Based Nanoparticles Containing Cherry Extract from Prunus avium L. to Improve the Resistance of Endothelial Cells to Oxidative Stress

Beconcini, Denise
Primo
Writing – Original Draft Preparation
;
Fabiano, Angela
Writing – Original Draft Preparation
;
Zambito, Ylenia
Writing – Original Draft Preparation
;
Santoni, Tatiana;Piras, Anna Maria;Di Stefano, Rossella
Ultimo
2018

Abstract

Cherries are known for their nutraceutical properties, in particular for their antioxidant ability due to their polyphenol content, which causes a reduction of cardiovascular disease (CVD) risk factors. However, once ingested these molecules are degraded in the Gastrointestinal (GI) tract before reaching the blood, which is the action site. The object of the present work is to evaluate the ability of cherry extract (CE), encapsulated in nanoparticles (NPs) based on different chitosan (Ch) derivatives, to promote a protective effect of human umbilical vein endothelial cells (HUVECs) involved in vascular dysfunction against oxidative stress. CE-loaded NPs based on quaternary ammonium chitosan (NP1) and an S-protected thiolated derivative thereof (NP2) were prepared. The mean particle size (NP1 344.9 ± 17.8, NP2 339.9 ± 68.2 nm), the polydispersity index, the encapsulation efficiency (NP1 78.4 ± 4.5, NP2 79.8 ± 0.6%), and the zeta potential (NP1 14.8 ± 0.3, NP2 15.8 ± 0.5 mV) did not appear to be significantly different. Both NP types improved the CE apparent permeation parameters with respect to the control. Conversely, CE-loaded NP2 protected HUVECs from oxidative stress and reduced reactive oxygen species (ROS) production more than CE-loaded NP1 and free CE. In addition to promoting HUVEC resistance, NP2 could be a useful tool to overcome the problem of cherry seasonality.
Beconcini, Denise; Fabiano, Angela; Zambito, Ylenia; Berni, Roberto; Santoni, Tatiana; Piras, Anna Maria; Di Stefano, Rossella
File in questo prodotto:
File Dimensione Formato  
nutrients-10-01598.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/934351
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact