The aim of this paper is to study relaxation rates for the Cahn–Hilliard equation in dimension larger than one. We follow the approach of Otto and Westdickenberg based on the gradient flow structure of the equation and establish differential and algebraic relationships between the energy, the dissipation, and the squared H˙ - 1 distance to a kink. This leads to a scale separation of the dynamics into two different stages: a first fast phase of the order t-12 where one sees convergence to some kink, followed by a slow relaxation phase with rate t-14 where convergence to the centered kink is observed.

A gradient flow approach to relaxation rates for the multi-dimensional Cahn–Hilliard equation

De Luca, Lucia;
2019

Abstract

The aim of this paper is to study relaxation rates for the Cahn–Hilliard equation in dimension larger than one. We follow the approach of Otto and Westdickenberg based on the gradient flow structure of the equation and establish differential and algebraic relationships between the energy, the dissipation, and the squared H˙ - 1 distance to a kink. This leads to a scale separation of the dynamics into two different stages: a first fast phase of the order t-12 where one sees convergence to some kink, followed by a slow relaxation phase with rate t-14 where convergence to the centered kink is observed.
De Luca, Lucia; Goldman, Michael; Strani, Marta
File in questo prodotto:
File Dimensione Formato  
De-Luca-Goldman-Strani-MathAnn-rivista-online.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 703.32 kB
Formato Adobe PDF
703.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/934905
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact