We compute the number of (weak) equivalence classes of branched covers from a surface of genus g to the sphere, with 3 branching points, degree 2k, and local degrees over the branching points of the form (2,…,2), (2h+1,1,2,…,2), π=dii=1ℓ, for several values of g and h. We obtain explicit formulae of arithmetic nature in terms of the local degrees di. Our proofs employ a combinatorial method based on Grothendieck's dessins d'enfant.

Explicit computation of some families of Hurwitz numbers

Petronio, Carlo
2019-01-01

Abstract

We compute the number of (weak) equivalence classes of branched covers from a surface of genus g to the sphere, with 3 branching points, degree 2k, and local degrees over the branching points of the form (2,…,2), (2h+1,1,2,…,2), π=dii=1ℓ, for several values of g and h. We obtain explicit formulae of arithmetic nature in terms of the local degrees di. Our proofs employ a combinatorial method based on Grothendieck's dessins d'enfant.
2019
Petronio, Carlo
File in questo prodotto:
File Dimensione Formato  
Petronio_EJM_2018.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 253.58 kB
Formato Adobe PDF
253.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/934947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact