We compute the number of (weak) equivalence classes of branched covers from a surface of genus g to the sphere, with 3 branching points, degree 2k, and local degrees over the branching points of the form (2,…,2), (2h+1,1,2,…,2), π=dii=1ℓ, for several values of g and h. We obtain explicit formulae of arithmetic nature in terms of the local degrees di. Our proofs employ a combinatorial method based on Grothendieck's dessins d'enfant.
Explicit computation of some families of Hurwitz numbers
Petronio, Carlo
2019-01-01
Abstract
We compute the number of (weak) equivalence classes of branched covers from a surface of genus g to the sphere, with 3 branching points, degree 2k, and local degrees over the branching points of the form (2,…,2), (2h+1,1,2,…,2), π=dii=1ℓ, for several values of g and h. We obtain explicit formulae of arithmetic nature in terms of the local degrees di. Our proofs employ a combinatorial method based on Grothendieck's dessins d'enfant.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Petronio_EJM_2018.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
253.58 kB
Formato
Adobe PDF
|
253.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.