We present the continuous monitoring of ground deformation at regional scale using ESA (European Space Agency) Sentinel-1constellation of satellites. We discuss this operational monitoring service through the case study of the Tuscany Region (Central Italy), selected due to its peculiar geological setting prone to ground instability phenomena. We set up a systematic processing chain of Sentinel-1 acquisitions to create continuously updated ground deformation data to mark the transition from static satellite analysis, based on the analysis of archive images, to dynamic monitoring of ground displacement. Displacement time series, systematically updated with the most recent available Sentinel-1 acquisition, are analysed to identify anomalous points (i.e., points where a change in the dynamic of motion is occurring). The presence of a cluster of persistent anomalies affecting elements at risk determines a significant level of risk, with the necessity of further analysis. Here, we show that the Sentinel-1 constellation can be used for continuous and systematic tracking of ground deformation phenomena at the regional scale. Our results demonstrate how satellite data, acquired with short revisiting times and promptly processed, can contribute to the detection of changes in ground deformation patterns and can act as a key information layer for risk mitigation.

Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites

Ciampalini, Andrea;Solari, Lorenzo;
2018

Abstract

We present the continuous monitoring of ground deformation at regional scale using ESA (European Space Agency) Sentinel-1constellation of satellites. We discuss this operational monitoring service through the case study of the Tuscany Region (Central Italy), selected due to its peculiar geological setting prone to ground instability phenomena. We set up a systematic processing chain of Sentinel-1 acquisitions to create continuously updated ground deformation data to mark the transition from static satellite analysis, based on the analysis of archive images, to dynamic monitoring of ground displacement. Displacement time series, systematically updated with the most recent available Sentinel-1 acquisition, are analysed to identify anomalous points (i.e., points where a change in the dynamic of motion is occurring). The presence of a cluster of persistent anomalies affecting elements at risk determines a significant level of risk, with the necessity of further analysis. Here, we show that the Sentinel-1 constellation can be used for continuous and systematic tracking of ground deformation phenomena at the regional scale. Our results demonstrate how satellite data, acquired with short revisiting times and promptly processed, can contribute to the detection of changes in ground deformation patterns and can act as a key information layer for risk mitigation.
Raspini, Federico; Bianchini, Silvia; Ciampalini, Andrea; Del Soldato, Matteo; Solari, Lorenzo; Novali, Fabrizio; Del Conte, Sara; Rucci, Alessio; Ferretti, Alessandro; Casagli, Nicola
File in questo prodotto:
File Dimensione Formato  
s41598-018-25369-w.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 5.3 MB
Formato Adobe PDF
5.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/935524
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 146
  • ???jsp.display-item.citation.isi??? 136
social impact