Propagule pressure is considered a major driver of plant invasion success. Great propagule pressure would enable invasive species to colonize new areas overcoming the resistance of native species. Many highly invasive aquatic macrophytes regenerate from vegetative propagules, but few studies have experimentally investigated the importance of propagule pressure and biotic resistance, and their interaction, in determining invasion success. By manipulating both recipient habitat and the input of vegetative propagules of the invasive seaweed Caulerpa cylindracea in mesocosm, we examined whether higher propagule pressure would overcome the resistance of a native congeneric (Caulerpa prolifera) and influence its performance. With the native, C. cylindracea population frond number decreased irrespectively of pressure level. High propagule pressure did not increase stolon length and single plant size decreased due to the effects of intra- and interspecific competition. Native biomass decreased with increasing C. cylindracea propagule pressure. These results indicate that higher propagule pressure may fail in enhancing C. cylindracea invasion success in habitats colonized by the native species, and they suggest that biotic resistance and propagule pressure co-regulate the invasion process. These findings emphasize the need to preserve/restore native seaweed populations and may help to design effective management actions to prevent further C. cylindracea spread.
Biotic resistance and vegetative propagule pressure co-regulate the invasion success of a marine clonal macrophyte
Balestri, Elena
Primo
;Vallerini, Flavia;Menicagli, Virginia;Lardicci, ClaudioUltimo
2018-01-01
Abstract
Propagule pressure is considered a major driver of plant invasion success. Great propagule pressure would enable invasive species to colonize new areas overcoming the resistance of native species. Many highly invasive aquatic macrophytes regenerate from vegetative propagules, but few studies have experimentally investigated the importance of propagule pressure and biotic resistance, and their interaction, in determining invasion success. By manipulating both recipient habitat and the input of vegetative propagules of the invasive seaweed Caulerpa cylindracea in mesocosm, we examined whether higher propagule pressure would overcome the resistance of a native congeneric (Caulerpa prolifera) and influence its performance. With the native, C. cylindracea population frond number decreased irrespectively of pressure level. High propagule pressure did not increase stolon length and single plant size decreased due to the effects of intra- and interspecific competition. Native biomass decreased with increasing C. cylindracea propagule pressure. These results indicate that higher propagule pressure may fail in enhancing C. cylindracea invasion success in habitats colonized by the native species, and they suggest that biotic resistance and propagule pressure co-regulate the invasion process. These findings emphasize the need to preserve/restore native seaweed populations and may help to design effective management actions to prevent further C. cylindracea spread.File | Dimensione | Formato | |
---|---|---|---|
Scientific Reports 2018.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.