We consider a general relation between fixed point stability of suitably perturbed transfer operators and convergence to equilibrium (a notion which is strictly related to decay of correlations). We apply this relation to deterministic perturbations of a class of (piecewise) partially hyperbolic skew products whose behavior on the preserved fibration is dominated by the expansion of the base map. In particular, we apply the results to power law mixing toral extensions. It turns out that in this case, the dependence of the physical measure on small deterministic perturbations, in a suitable anisotropic metric, is at least Hölder continuous, with an exponent which is explicitly estimated depending on the arithmetical properties of the system. We show explicit examples of toral extensions having actually Hölder stability and non differentiable dependence of the physical measure on perturbations.

Quantitative statistical stability, speed of convergence to equilibrium and partially hyperbolic skew products

Galatolo, Stefano
2018

Abstract

We consider a general relation between fixed point stability of suitably perturbed transfer operators and convergence to equilibrium (a notion which is strictly related to decay of correlations). We apply this relation to deterministic perturbations of a class of (piecewise) partially hyperbolic skew products whose behavior on the preserved fibration is dominated by the expansion of the base map. In particular, we apply the results to power law mixing toral extensions. It turns out that in this case, the dependence of the physical measure on small deterministic perturbations, in a suitable anisotropic metric, is at least Hölder continuous, with an exponent which is explicitly estimated depending on the arithmetical properties of the system. We show explicit examples of toral extensions having actually Hölder stability and non differentiable dependence of the physical measure on perturbations.
Galatolo, Stefano
File in questo prodotto:
File Dimensione Formato  
Jep.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 719.94 kB
Formato Adobe PDF
719.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/937190
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact