We consider the Euler--Voigt equations in a smooth bounded domain as an approximation for the 3D Euler equations. We show that the solutions of the Voigt equations are global, do not smooth out the data, and converge to the solutions of the Euler equations. For these reasons they represent a good model, also for computations of turbulent flows.

A note on the Euler-Voigt system in a 3D bounded domain: Propagation of singularities and absence of the boundary layer

Luigi C. Berselli
;
2019

Abstract

We consider the Euler--Voigt equations in a smooth bounded domain as an approximation for the 3D Euler equations. We show that the solutions of the Voigt equations are global, do not smooth out the data, and converge to the solutions of the Euler equations. For these reasons they represent a good model, also for computations of turbulent flows.
Berselli, Luigi C.; Catania, Davide
File in questo prodotto:
File Dimensione Formato  
AIMS-Mathematics2019.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 239.52 kB
Formato Adobe PDF
239.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/937616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact