We perform molecular-dynamics simulations of a supported molecular thin film. By varying thickness and temperature, we observe anisotropic mobility as well as strong gradients of both the vibrational motion and the structural relaxation through film layers with monomer-size thickness. We show that the gradients of the fast and the slow dynamics across the layers (except the adherent layer to the substrate) comply, without any adjustment, with the same scaling between the structural relaxation time and the Debye-Waller factor originally observed in the bulk [Larini et al., Nat. Phys., 2008, 4, 42]. The scaling is not observed if the average dynamics of the film is inspected. Our results suggest that the solidification process of each layer may be tracked by knowing solely the vibrational properties of the layer and the bulk.
Molecular layers in thin supported films exhibit the same scaling as the bulk between slow relaxation and vibrational dynamics
Leporini, Dino
Ultimo
Membro del Collaboration Group
2018-01-01
Abstract
We perform molecular-dynamics simulations of a supported molecular thin film. By varying thickness and temperature, we observe anisotropic mobility as well as strong gradients of both the vibrational motion and the structural relaxation through film layers with monomer-size thickness. We show that the gradients of the fast and the slow dynamics across the layers (except the adherent layer to the substrate) comply, without any adjustment, with the same scaling between the structural relaxation time and the Debye-Waller factor originally observed in the bulk [Larini et al., Nat. Phys., 2008, 4, 42]. The scaling is not observed if the average dynamics of the film is inspected. Our results suggest that the solidification process of each layer may be tracked by knowing solely the vibrational properties of the layer and the bulk.File | Dimensione | Formato | |
---|---|---|---|
1810.10594_SM18.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
536.78 kB
Formato
Adobe PDF
|
536.78 kB | Adobe PDF | Visualizza/Apri |
BecchiGiuntoliFilmSoftMatter18.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.