The breakdown of the Stokes-Einstein (SE) law in fragile glassformers is examined by Molecular-Dynamics simulations of atomic liquids and polymers and consideration of the experimental data concerning the archetypical ortho-terphenyl glassformer. All the four systems comply with the universal scaling between the viscosity (or the structural relaxation) and the Debye-Waller factor «u2», the mean square amplitude of the particle rattling in the cage formed by the surrounding neighbors. It is found that the SE breakdown is scaled in a master curve by a reduced «u2». Two approximated expressions of the latter, with no and one adjustable parameter, respectively, are derived.

Communication: Fast dynamics perspective on the breakdown of the Stokes-Einstein law in fragile glassformers

Puosi, F.
Primo
Membro del Collaboration Group
;
Leporini, D.
Ultimo
Membro del Collaboration Group
2018-01-01

Abstract

The breakdown of the Stokes-Einstein (SE) law in fragile glassformers is examined by Molecular-Dynamics simulations of atomic liquids and polymers and consideration of the experimental data concerning the archetypical ortho-terphenyl glassformer. All the four systems comply with the universal scaling between the viscosity (or the structural relaxation) and the Debye-Waller factor «u2», the mean square amplitude of the particle rattling in the cage formed by the surrounding neighbors. It is found that the SE breakdown is scaled in a master curve by a reduced «u2». Two approximated expressions of the latter, with no and one adjustable parameter, respectively, are derived.
2018
Puosi, F.; Pasturel, A.; Jakse, N.; Leporini, D.
File in questo prodotto:
File Dimensione Formato  
SE2_jcp18.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 321.92 kB
Formato Adobe PDF
321.92 kB Adobe PDF Visualizza/Apri
SE2_Francesco_JCP18.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 617.65 kB
Formato Adobe PDF
617.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/937942
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact