In order to develop a better understanding at the molecular level of water sensitivity in twentieth century oil paintings, water sensitive Winsor & Newton oil paint swatches and twentieth century oil paintings were characterised using gas chromatography–mass spectrometry (GC–MS) and direct injection electrospray ionisation mass spectrometry (ESI-MS), and the data were analysed using principal component analysis. Liquid chromatography coupled with tandem mass spectrometry based on quadrupole and time of flight mass detectors and electrospray interface (HPLC-ESI-Q-ToF) was also used to obtain a better insight into the molecular composition of a selection of samples. The study highlights a strong relationship between the molecular composition of the binding medium and the type of pigment present in the paint, which relates to water sensitivity. Consistently non-water sensitive lead white, titanium white, and zinc white paints [all containing zinc oxide] contained a relatively low proportion of extractable diacids, and a relatively high proportion of extractable short chain monoacids. These paints also contained a relatively low level of unsaturated and hydroxylated glycerides. Water sensitive iron oxide and ultramarine paints are associated with both a relatively high degree of oxidation and a high proportion of extractable diacids, as well as a relatively high content of unsaturated and hydroxylated glycerides. Water sensitive cadmium red, yellow and orange paints were generally not highly oxidised, but they also contained a relatively high content of unsaturated and hydroxylated glycerides. It is hypothesised that water sensitivity relates to a low degree of saponification and crosslinking and possibly, on the relative content of dicarboxylic acids.

Scientific investigation into the water sensitivity of twentieth century oil paints

Bonaduce, Ilaria
Secondo
Conceptualization
;
Modugno, Francesca;La Nasa, Jacopo;
2018-01-01

Abstract

In order to develop a better understanding at the molecular level of water sensitivity in twentieth century oil paintings, water sensitive Winsor & Newton oil paint swatches and twentieth century oil paintings were characterised using gas chromatography–mass spectrometry (GC–MS) and direct injection electrospray ionisation mass spectrometry (ESI-MS), and the data were analysed using principal component analysis. Liquid chromatography coupled with tandem mass spectrometry based on quadrupole and time of flight mass detectors and electrospray interface (HPLC-ESI-Q-ToF) was also used to obtain a better insight into the molecular composition of a selection of samples. The study highlights a strong relationship between the molecular composition of the binding medium and the type of pigment present in the paint, which relates to water sensitivity. Consistently non-water sensitive lead white, titanium white, and zinc white paints [all containing zinc oxide] contained a relatively low proportion of extractable diacids, and a relatively high proportion of extractable short chain monoacids. These paints also contained a relatively low level of unsaturated and hydroxylated glycerides. Water sensitive iron oxide and ultramarine paints are associated with both a relatively high degree of oxidation and a high proportion of extractable diacids, as well as a relatively high content of unsaturated and hydroxylated glycerides. Water sensitive cadmium red, yellow and orange paints were generally not highly oxidised, but they also contained a relatively high content of unsaturated and hydroxylated glycerides. It is hypothesised that water sensitivity relates to a low degree of saponification and crosslinking and possibly, on the relative content of dicarboxylic acids.
2018
Lee, Judith; Bonaduce, Ilaria; Modugno, Francesca; La Nasa, Jacopo; Ormsby, Bronwyn; van den Berg, Klaas Jan
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0026265X17309104-main.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/938380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 41
social impact