The He-3(e,e(')p)d reaction is studied using an accurate three-nucleon bound state wave function, a model for the electromagnetic current operator including one- and two-body terms, and the Glauber approximation for the treatment of final state interactions. In contrast to earlier studies, the profile operator in the Glauber expansion is derived from a nucleon-nucleon scattering amplitude which retains its full spin and isospin dependence, and is consistent with phase-shift analyses of two-nucleon scattering data. The amplitude is boosted from the center-of-mass frame, where parametrizations for it are available, to the frame where rescattering occurs. Exact Monte Carlo methods are used to evaluate the relevant matrix elements of the electromagnetic current operator. The predicted cross section is found to be in quantitative agreement with the experimental data for values of the missing momentum p(m) in the range (0-700) MeV/c, but underestimates the data at p(m)similar or equal to 1 GeV/c by about a factor of two. However, the longitudinal-transverse asymmetry, measured up to p(m)similar or equal to 600 MeV/c, is well reproduced by theory. A critical comparison is carried out between the results obtained in the present work and those of earlier studies.

Two-body electrodisintegration of He-3 at high momentum transfer RID A-7123-2011

MARCUCCI, LAURA ELISA;
2005-01-01

Abstract

The He-3(e,e(')p)d reaction is studied using an accurate three-nucleon bound state wave function, a model for the electromagnetic current operator including one- and two-body terms, and the Glauber approximation for the treatment of final state interactions. In contrast to earlier studies, the profile operator in the Glauber expansion is derived from a nucleon-nucleon scattering amplitude which retains its full spin and isospin dependence, and is consistent with phase-shift analyses of two-nucleon scattering data. The amplitude is boosted from the center-of-mass frame, where parametrizations for it are available, to the frame where rescattering occurs. Exact Monte Carlo methods are used to evaluate the relevant matrix elements of the electromagnetic current operator. The predicted cross section is found to be in quantitative agreement with the experimental data for values of the missing momentum p(m) in the range (0-700) MeV/c, but underestimates the data at p(m)similar or equal to 1 GeV/c by about a factor of two. However, the longitudinal-transverse asymmetry, measured up to p(m)similar or equal to 600 MeV/c, is well reproduced by theory. A critical comparison is carried out between the results obtained in the present work and those of earlier studies.
2005
Schiavilla, R; Benhar, O; Kievsky, A; Marcucci, LAURA ELISA; Viviani, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/94056
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 23
social impact