In recent years, oxidative stress has been recognized as one of the most common effects of nanoparticles in different organisms. Ficopomatus enigmaticus (Fauvel, 1923), a member of a large family of serpulidae polychates, is an important encrusting organism in a diverse set of marine habitats, from harbours to coral reefs. This species has been previously studied for ecotoxicological purposes, despite the lack of reported studies on this species biochemical response after exposure to different pollutants. For these reasons, and for the first time, a set of biomarkers related to oxidative status were assessed in polychaetes after 28 days of exposure. Furthermore, polychaetes metabolic performance and potential neurotoxicity were investigated. Results clearly demonstrated induced toxicity in the filter-feeder polychaetes after exposure to nanoparticles. Indeed, CNTs altered the biochemical and physiological status of F. enigmaticus, both in terms of energy reserves (reduction of protein and glycogen contents), oxidative status (expressed as damage in cell function such as protein carbonyl content and lipid peroxidation) and activation of antioxidant enzymes defences (Glutathione reductase, Catalase, Glutathione peroxidase and Glutathione S-transferases activities). The present study showed for the first time that this species can be used as a model organism for nanoparticle toxicology.

Toxicity evaluation of carboxylated carbon nanotubes to the reef-forming tubeworm Ficopomatus enigmaticus (Fauvel, 1923)

Chiellini, Federica;Morelli, Andrea;Pretti, Carlo
Ultimo
2019-01-01

Abstract

In recent years, oxidative stress has been recognized as one of the most common effects of nanoparticles in different organisms. Ficopomatus enigmaticus (Fauvel, 1923), a member of a large family of serpulidae polychates, is an important encrusting organism in a diverse set of marine habitats, from harbours to coral reefs. This species has been previously studied for ecotoxicological purposes, despite the lack of reported studies on this species biochemical response after exposure to different pollutants. For these reasons, and for the first time, a set of biomarkers related to oxidative status were assessed in polychaetes after 28 days of exposure. Furthermore, polychaetes metabolic performance and potential neurotoxicity were investigated. Results clearly demonstrated induced toxicity in the filter-feeder polychaetes after exposure to nanoparticles. Indeed, CNTs altered the biochemical and physiological status of F. enigmaticus, both in terms of energy reserves (reduction of protein and glycogen contents), oxidative status (expressed as damage in cell function such as protein carbonyl content and lipid peroxidation) and activation of antioxidant enzymes defences (Glutathione reductase, Catalase, Glutathione peroxidase and Glutathione S-transferases activities). The present study showed for the first time that this species can be used as a model organism for nanoparticle toxicology.
2019
De Marchi, Lucia; Oliva, Matteo; Freitas, Rosa; Neto, Victor; Figueira, Etelvina; Chiellini, Federica; Morelli, Andrea; Soares, Amadeu M. V. M.; Pretti, Carlo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/940744
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact