We demonstrate that persistent currents can be induced in a quantum system in contact with a structured reservoir, without the need of any applied gauge field. The working principle of the mechanism leading to their presence is based on the extension to the many-body scenario of nonreciprocal Lindblad dynamics, recently put forward by Metelmann and Clerk, Phys. Rev. X 5, 021025 (2015)10.1103/PhysRevX.5.021025: Nonreciprocity can be generated by suitably balancing coherent interactions with their corresponding dissipative version, induced by the coupling to a common structured environment, so as to make the total interactions directional. Specifically, we consider an interacting spin- (or boson-) model in a ring-shaped one-dimensional lattice coupled to an external bath. By employing a combination of cluster mean-field, exact diagonalization, and matrix-product-operator techniques, we show that solely dissipative effects suffice to engineer steady states with a persistent current that survives in the limit of large systems. We also verify the robustness of such current in the presence of additional dissipative or Hamiltonian perturbation terms.

Persistent currents by reservoir engineering

Rossini, Davide;
2018

Abstract

We demonstrate that persistent currents can be induced in a quantum system in contact with a structured reservoir, without the need of any applied gauge field. The working principle of the mechanism leading to their presence is based on the extension to the many-body scenario of nonreciprocal Lindblad dynamics, recently put forward by Metelmann and Clerk, Phys. Rev. X 5, 021025 (2015)10.1103/PhysRevX.5.021025: Nonreciprocity can be generated by suitably balancing coherent interactions with their corresponding dissipative version, induced by the coupling to a common structured environment, so as to make the total interactions directional. Specifically, we consider an interacting spin- (or boson-) model in a ring-shaped one-dimensional lattice coupled to an external bath. By employing a combination of cluster mean-field, exact diagonalization, and matrix-product-operator techniques, we show that solely dissipative effects suffice to engineer steady states with a persistent current that survives in the limit of large systems. We also verify the robustness of such current in the presence of additional dissipative or Hamiltonian perturbation terms.
Keck, Maximilian; Rossini, Davide; Fazio, Rosario
File in questo prodotto:
File Dimensione Formato  
PhysRevA.98.053812_CurrDiss.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 755 kB
Formato Adobe PDF
755 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/941820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact