We demonstrate that persistent currents can be induced in a quantum system in contact with a structured reservoir, without the need of any applied gauge field. The working principle of the mechanism leading to their presence is based on the extension to the many-body scenario of nonreciprocal Lindblad dynamics, recently put forward by Metelmann and Clerk, Phys. Rev. X 5, 021025 (2015)10.1103/PhysRevX.5.021025: Nonreciprocity can be generated by suitably balancing coherent interactions with their corresponding dissipative version, induced by the coupling to a common structured environment, so as to make the total interactions directional. Specifically, we consider an interacting spin- (or boson-) model in a ring-shaped one-dimensional lattice coupled to an external bath. By employing a combination of cluster mean-field, exact diagonalization, and matrix-product-operator techniques, we show that solely dissipative effects suffice to engineer steady states with a persistent current that survives in the limit of large systems. We also verify the robustness of such current in the presence of additional dissipative or Hamiltonian perturbation terms.
Persistent currents by reservoir engineering
Rossini, Davide;
2018-01-01
Abstract
We demonstrate that persistent currents can be induced in a quantum system in contact with a structured reservoir, without the need of any applied gauge field. The working principle of the mechanism leading to their presence is based on the extension to the many-body scenario of nonreciprocal Lindblad dynamics, recently put forward by Metelmann and Clerk, Phys. Rev. X 5, 021025 (2015)10.1103/PhysRevX.5.021025: Nonreciprocity can be generated by suitably balancing coherent interactions with their corresponding dissipative version, induced by the coupling to a common structured environment, so as to make the total interactions directional. Specifically, we consider an interacting spin- (or boson-) model in a ring-shaped one-dimensional lattice coupled to an external bath. By employing a combination of cluster mean-field, exact diagonalization, and matrix-product-operator techniques, we show that solely dissipative effects suffice to engineer steady states with a persistent current that survives in the limit of large systems. We also verify the robustness of such current in the presence of additional dissipative or Hamiltonian perturbation terms.File | Dimensione | Formato | |
---|---|---|---|
PhysRevA.98.053812_CurrDiss.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
755 kB
Formato
Adobe PDF
|
755 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.