The competition between interactions and dissipative processes in a quantum many-body system can drive phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we show how the systematic inclusion of (classical and quantum) nonlocal correlations at increasing distances is crucial to determine the structure of the phase diagram, as well as the nature of the transitions in strongly interacting spin systems. In practice, we focus on the paradigmatic dissipative quantum Ising model: In contrast to the nondissipative case, its phase diagram is still a matter of debate in the literature. When dissipation acts along the interaction direction, we predict important quantitative modifications of the position of the first-order transition boundary. In the case of incoherent relaxation in the field direction, our approach confirms the presence of a second-order transition, while does not support the possible existence of multicritical points. Potentially, these results can be tested in up-to-date quantum simulators of Rydberg atoms.

Phase diagram of the dissipative quantum Ising model on a square lattice

Rossini, Davide
2018-01-01

Abstract

The competition between interactions and dissipative processes in a quantum many-body system can drive phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we show how the systematic inclusion of (classical and quantum) nonlocal correlations at increasing distances is crucial to determine the structure of the phase diagram, as well as the nature of the transitions in strongly interacting spin systems. In practice, we focus on the paradigmatic dissipative quantum Ising model: In contrast to the nondissipative case, its phase diagram is still a matter of debate in the literature. When dissipation acts along the interaction direction, we predict important quantitative modifications of the position of the first-order transition boundary. In the case of incoherent relaxation in the field direction, our approach confirms the presence of a second-order transition, while does not support the possible existence of multicritical points. Potentially, these results can be tested in up-to-date quantum simulators of Rydberg atoms.
2018
Jin, Jiasen; Biella, Alberto; Viyuela, Oscar; Ciuti, Cristiano; Fazio, Rosario; Rossini, Davide
File in questo prodotto:
File Dimensione Formato  
PhysRevB.98.241108_OpenIsing.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 615.44 kB
Formato Adobe PDF
615.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/941824
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 37
social impact