We present first evidence that the cosine of the CP-violating weak phase 2 beta is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B-0 -> D-(*) h(0) with D -> K-S(0)pi(+)pi(-) decays, where h(0) is an element of {pi(0), eta, omega} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the (sic)(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471 +/- 3) x 10(6) B (B) over bar pairs recorded by the BABAR detector and (772 +/- 11) x 10(6) B (B) over bar pairs recorded by the Belle detector. The results of the measurement are sin 2 beta = 0.80 +/- 0.14 (stat) +/- 0.06 (syst) +/- 0.03 (model) and cos 2 beta = 0.91 +/- 0.22(stat) +/- 0.09 (syst) +/- 0.07(model). The result for the direct measurement of the angle beta of the CKM Unitarity Triangle is beta = [22.5 +/- 4.4 (stat) +/- 1.2 (syst) +/- 0.6(model)]degrees. The measurement assumes no direct CP violation in B-0 -> D-(*) h(0) decays. The quoted model uncertainties are due to the composition of the D-0 -> K-S(0)pi(+)pi(-) decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e(+)e(-) -> c (c) over bar data sample. CP violation is observed in B-0 -> D-(*) h(0) decays at the level of 5.1 standard deviations. The significance for cos 2 beta > 0 is 3.7 standard deviations. The trigonometric multifold solution pi/2 - beta = (68.1 +/- 0.7)degrees is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.
First Evidence for cos2β>0 and Resolution of the Cabibbo-Kobayashi-Maskawa Quark-Mixing Unitarity Triangle Ambiguity
Batignani, G.;Bettarini, S.;Casarosa, G.;Cenci, R.;Forti, F.;Giorgi, M. A.;Lueck, T.;Oberhof, B.;Paoloni, E.;Rizzo, G.;Tenchini, F.;Zani, L.;
2018-01-01
Abstract
We present first evidence that the cosine of the CP-violating weak phase 2 beta is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B-0 -> D-(*) h(0) with D -> K-S(0)pi(+)pi(-) decays, where h(0) is an element of {pi(0), eta, omega} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the (sic)(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471 +/- 3) x 10(6) B (B) over bar pairs recorded by the BABAR detector and (772 +/- 11) x 10(6) B (B) over bar pairs recorded by the Belle detector. The results of the measurement are sin 2 beta = 0.80 +/- 0.14 (stat) +/- 0.06 (syst) +/- 0.03 (model) and cos 2 beta = 0.91 +/- 0.22(stat) +/- 0.09 (syst) +/- 0.07(model). The result for the direct measurement of the angle beta of the CKM Unitarity Triangle is beta = [22.5 +/- 4.4 (stat) +/- 1.2 (syst) +/- 0.6(model)]degrees. The measurement assumes no direct CP violation in B-0 -> D-(*) h(0) decays. The quoted model uncertainties are due to the composition of the D-0 -> K-S(0)pi(+)pi(-) decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e(+)e(-) -> c (c) over bar data sample. CP violation is observed in B-0 -> D-(*) h(0) decays at the level of 5.1 standard deviations. The significance for cos 2 beta > 0 is 3.7 standard deviations. The trigonometric multifold solution pi/2 - beta = (68.1 +/- 0.7)degrees is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.