We present first evidence that the cosine of the CP-violating weak phase 2 beta is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B-0 -> D-(*) h(0) with D -> K-S(0)pi(+)pi(-) decays, where h(0) is an element of {pi(0), eta, omega} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the (sic)(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471 +/- 3) x 10(6) B (B) over bar pairs recorded by the BABAR detector and (772 +/- 11) x 10(6) B (B) over bar pairs recorded by the Belle detector. The results of the measurement are sin 2 beta = 0.80 +/- 0.14 (stat) +/- 0.06 (syst) +/- 0.03 (model) and cos 2 beta = 0.91 +/- 0.22(stat) +/- 0.09 (syst) +/- 0.07(model). The result for the direct measurement of the angle beta of the CKM Unitarity Triangle is beta = [22.5 +/- 4.4 (stat) +/- 1.2 (syst) +/- 0.6(model)]degrees. The measurement assumes no direct CP violation in B-0 -> D-(*) h(0) decays. The quoted model uncertainties are due to the composition of the D-0 -> K-S(0)pi(+)pi(-) decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e(+)e(-) -> c (c) over bar data sample. CP violation is observed in B-0 -> D-(*) h(0) decays at the level of 5.1 standard deviations. The significance for cos 2 beta > 0 is 3.7 standard deviations. The trigonometric multifold solution pi/2 - beta = (68.1 +/- 0.7)degrees is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.

First Evidence for cos2β>0 and Resolution of the Cabibbo-Kobayashi-Maskawa Quark-Mixing Unitarity Triangle Ambiguity

Batignani, G.;Bettarini, S.;Casarosa, G.;Cenci, R.;Forti, F.;Giorgi, M.  A.;Lueck, T.;Oberhof, B.;Paoloni, E.;Rizzo, G.;Tenchini, F.;Zani, L.;
2018-01-01

Abstract

We present first evidence that the cosine of the CP-violating weak phase 2 beta is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B-0 -> D-(*) h(0) with D -> K-S(0)pi(+)pi(-) decays, where h(0) is an element of {pi(0), eta, omega} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the (sic)(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471 +/- 3) x 10(6) B (B) over bar pairs recorded by the BABAR detector and (772 +/- 11) x 10(6) B (B) over bar pairs recorded by the Belle detector. The results of the measurement are sin 2 beta = 0.80 +/- 0.14 (stat) +/- 0.06 (syst) +/- 0.03 (model) and cos 2 beta = 0.91 +/- 0.22(stat) +/- 0.09 (syst) +/- 0.07(model). The result for the direct measurement of the angle beta of the CKM Unitarity Triangle is beta = [22.5 +/- 4.4 (stat) +/- 1.2 (syst) +/- 0.6(model)]degrees. The measurement assumes no direct CP violation in B-0 -> D-(*) h(0) decays. The quoted model uncertainties are due to the composition of the D-0 -> K-S(0)pi(+)pi(-) decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e(+)e(-) -> c (c) over bar data sample. CP violation is observed in B-0 -> D-(*) h(0) decays at the level of 5.1 standard deviations. The significance for cos 2 beta > 0 is 3.7 standard deviations. The trigonometric multifold solution pi/2 - beta = (68.1 +/- 0.7)degrees is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.
2018
Adachi, I.; Adye, T.; Ahmed, H.; Ahn, J.  K.; Aihara, H.; Akar, S.; Alam, M.  S.; Albert, J.; Anulli, F.; Arnaud, N.; Asner, D.  M.; Aston, D.; Atmaca...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/942490
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact