Hypothalamic proopiomelanocortin (POMC) neurons are important players in the regulation of energy homeostasis; we previously demonstrated that environmental stimulation excites arcuate nucleus circuits to undergo plastic remodeling, leading to altered ratio between excitatory and inhibitory synaptic contacts on these neurons. The widely used selective serotonin reuptake inhibitor fluoxetine (FLX) is known to affect body weight. On the other hand, FLX administration mimics the effects of environmental stimulation on synaptic plasticity in the hippocampus and cortex. The mammalian target of rapamycin (mTOR) pathway is instrumental in these phenomena. Thus, we aimed at investigating whether and how FLX affects POMC neurons activity and hypothalamic mTOR function. Adult mice expressing green fluorescent protein (GFP) under the POMC promoter were treated with FLX for 3 weeks resulting in diminished body weight. Patch clamp recordings performed on POMC neurons indicate that FLX increases their firing rate and the excitatory AMPA-mediated transmission, and reduces the inhibitory GABAergic currents at presynaptic level. Immunofluorescence studies indicate that FLX increases the ratio between excitatory and inhibitory synaptic contacts on POMC neurons. These changes are associated with an increased activity of the hypothalamic mTOR pathway. Use of the mTOR inhibitor rapamycin blunts the effects of FLX on body weight and on functional and structural plasticity of POMC neurons. Our findings indicate that FLX is able to remodel POMC neurons, and that this may be partly mediated by the mTOR signaling pathway.

Fluoxetine Modulates the Activity of Hypothalamic POMC Neurons via mTOR Signaling

Scabia, Gaia;Ceccarini, Giovanni;Vitti, Paolo;Santini, Ferruccio;Maffei, Margherita
2018-01-01

Abstract

Hypothalamic proopiomelanocortin (POMC) neurons are important players in the regulation of energy homeostasis; we previously demonstrated that environmental stimulation excites arcuate nucleus circuits to undergo plastic remodeling, leading to altered ratio between excitatory and inhibitory synaptic contacts on these neurons. The widely used selective serotonin reuptake inhibitor fluoxetine (FLX) is known to affect body weight. On the other hand, FLX administration mimics the effects of environmental stimulation on synaptic plasticity in the hippocampus and cortex. The mammalian target of rapamycin (mTOR) pathway is instrumental in these phenomena. Thus, we aimed at investigating whether and how FLX affects POMC neurons activity and hypothalamic mTOR function. Adult mice expressing green fluorescent protein (GFP) under the POMC promoter were treated with FLX for 3 weeks resulting in diminished body weight. Patch clamp recordings performed on POMC neurons indicate that FLX increases their firing rate and the excitatory AMPA-mediated transmission, and reduces the inhibitory GABAergic currents at presynaptic level. Immunofluorescence studies indicate that FLX increases the ratio between excitatory and inhibitory synaptic contacts on POMC neurons. These changes are associated with an increased activity of the hypothalamic mTOR pathway. Use of the mTOR inhibitor rapamycin blunts the effects of FLX on body weight and on functional and structural plasticity of POMC neurons. Our findings indicate that FLX is able to remodel POMC neurons, and that this may be partly mediated by the mTOR signaling pathway.
2018
Barone, Ilaria; Melani, Riccardo; Mainardi, Marco; Scabia, Gaia; Scali, Manuela; Dattilo, Alessia; Ceccarini, Giovanni; Vitti, Paolo; Santini, Ferrucc...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/942726
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact