We consider the model describing the vertical motion of a ball falling with constant acceleration on a wall and elastically reflected. The wall is supposed to move in the vertical direction according to a given periodic function f. We apply the Aubry-Mather theory to the generating function in order to prove the existence of bounded motions with prescribed mean time between the bounces. As the existence of unbounded motions is known, it is possible to find a class of functions f that allow both bounded and unbounded motions. © 2013 IOP Publishing Ltd & London Mathematical Society.

Coexistence of bounded and unbounded motions in a bouncing ball model

Marò, Stefano
Primo
2013-01-01

Abstract

We consider the model describing the vertical motion of a ball falling with constant acceleration on a wall and elastically reflected. The wall is supposed to move in the vertical direction according to a given periodic function f. We apply the Aubry-Mather theory to the generating function in order to prove the existence of bounded motions with prescribed mean time between the bounces. As the existence of unbounded motions is known, it is possible to find a class of functions f that allow both bounded and unbounded motions. © 2013 IOP Publishing Ltd & London Mathematical Society.
2013
Marò, Stefano
File in questo prodotto:
File Dimensione Formato  
post_print_Nonlinearity.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 250.59 kB
Formato Adobe PDF
250.59 kB Adobe PDF Visualizza/Apri
Marò_2013_Nonlinearity_version of record.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 316.44 kB
Formato Adobe PDF
316.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/942917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact