Prisoner’s Dilemma (PD) is a widely studied game that plays an important role in Game Theory. This paper aims at extending PD Tournaments to the case of infinite, finite or infinitesimal payoffs using Sergeyev’s Infinity Computing (IC). By exploiting IC, we are able to show the limits of the classical approach to PD Tournaments analysis of the classical theory, extending both the sets of the feasible and numerically computable tournaments. In particular we provide a numerical computation of the exact outcome of a simple PD Tournament where one player meets every other an infinite number of times, for both its deterministic and stochastic formulations.

Numerical Asymptotic Results in Game Theory Using Sergeyev’s Infinity Computing

Marco Cococcioni
Co-primo
Conceptualization
2018-01-01

Abstract

Prisoner’s Dilemma (PD) is a widely studied game that plays an important role in Game Theory. This paper aims at extending PD Tournaments to the case of infinite, finite or infinitesimal payoffs using Sergeyev’s Infinity Computing (IC). By exploiting IC, we are able to show the limits of the classical approach to PD Tournaments analysis of the classical theory, extending both the sets of the feasible and numerically computable tournaments. In particular we provide a numerical computation of the exact outcome of a simple PD Tournament where one player meets every other an infinite number of times, for both its deterministic and stochastic formulations.
2018
Fiaschi, Lorenzo; Cococcioni, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/944288
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact