Ischemia reperfusion injury (IRI) in organ transplantation remains a serious and unsolved problem. Organs that undergo significant damage during IRI, function less well immediately after reperfusion and tend to have more problems at later times when rejection can occur. Biliverdin has emerged as an agent that potently suppress IRI in rodent models. Since the use of biliverdin is being developed as a potential therapeutic modality for humans, we tested the efficacy for its effects on IRI of the liver in swine, an accepted and relevant pre-clinical animal model. Administration of biliverdin resulted in rapid appearance of bilirubin in the serum and significantly suppressed IRI-induced liver dysfunction as measured by multiple parameters including urea and ammonia clearance, neutrophil infiltration and tissue histopathology including hepatocyte cell death. Taken together, our findings, in a large animal model, provide strong support for the continued evaluation of biliverdin as a potential therapeutic in the clinical setting of transplantation of the liver and perhaps other organs.

Biliverdin Protects against Liver Ischemia Reperfusion Injury in Swine

Giovannoni R;
2013

Abstract

Ischemia reperfusion injury (IRI) in organ transplantation remains a serious and unsolved problem. Organs that undergo significant damage during IRI, function less well immediately after reperfusion and tend to have more problems at later times when rejection can occur. Biliverdin has emerged as an agent that potently suppress IRI in rodent models. Since the use of biliverdin is being developed as a potential therapeutic modality for humans, we tested the efficacy for its effects on IRI of the liver in swine, an accepted and relevant pre-clinical animal model. Administration of biliverdin resulted in rapid appearance of bilirubin in the serum and significantly suppressed IRI-induced liver dysfunction as measured by multiple parameters including urea and ammonia clearance, neutrophil infiltration and tissue histopathology including hepatocyte cell death. Taken together, our findings, in a large animal model, provide strong support for the continued evaluation of biliverdin as a potential therapeutic in the clinical setting of transplantation of the liver and perhaps other organs.
Andria, B; Bracco, A; Attanasio, C; Castaldo, S; Cerrito, M; Cozzolino, S; Di Napoli, D; Giovannoni, R; Mancini, A; Musumeci, A; Mezza, E; Nasti, M; Scuderi, V; Staibano, S; Lavitrano, M; Otterbein, L; Calise, F
File in questo prodotto:
File Dimensione Formato  
journal.pone.0069972.PDF

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/945491
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 25
social impact