In this paper, a dual-band photonics-based radar system used for precise displacementmeasures in a multitarget scenario is described. The radar was designed for monitoring applications to prevent both structural failures of buildings and landslides. The radar system exploits the technique of stepped frequency continuous wave signal modulation and the displacement of the targets is evaluated through differential phase measurements. In thiswork, encouraged by the results already achieved in the single-target scenario, we present an investigation extended to the case of multiple targets. We aim to evaluate the accuracy of the displacement estimation both from a simulated and experimental point of view, and to understand how multiple targets impact on the final estimate of displacements. Simulation results demonstrate that it is possible to achieve a typical accuracy of less than 0.2 mm for distances up to 400 m. These results are confirmed by preliminary experimental outcomes, which take into account different operative conditions with multiple targets. Finally, concluding remarks and perspectives draw the agenda for our future investigations.

Photonics-Based Dual-Band Radar for Landslides Monitoring in Presence of Multiple Scatterers

Filippo Giannetti
Co-primo
Writing – Original Draft Preparation
;
2018-01-01

Abstract

In this paper, a dual-band photonics-based radar system used for precise displacementmeasures in a multitarget scenario is described. The radar was designed for monitoring applications to prevent both structural failures of buildings and landslides. The radar system exploits the technique of stepped frequency continuous wave signal modulation and the displacement of the targets is evaluated through differential phase measurements. In thiswork, encouraged by the results already achieved in the single-target scenario, we present an investigation extended to the case of multiple targets. We aim to evaluate the accuracy of the displacement estimation both from a simulated and experimental point of view, and to understand how multiple targets impact on the final estimate of displacements. Simulation results demonstrate that it is possible to achieve a typical accuracy of less than 0.2 mm for distances up to 400 m. These results are confirmed by preliminary experimental outcomes, which take into account different operative conditions with multiple targets. Finally, concluding remarks and perspectives draw the agenda for our future investigations.
2018
Melo, Suzanne; Maresca, Salvatore; Pinna, Sergio; Scotti, Filippo; Khosravanian, Milad; S. Jr., Arismar Cerqueira; Giannetti, Filippo; Das Barman, Abhirup; Bogoni, Antonella
File in questo prodotto:
File Dimensione Formato  
Photonics_journal_paper-post-print.pdf

accesso aperto

Descrizione: Paper pubblicato
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 742.39 kB
Formato Adobe PDF
742.39 kB Adobe PDF Visualizza/Apri
Photonics_journal_paper.pdf

solo utenti autorizzati

Descrizione: Paper pubblicato
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 639.96 kB
Formato Adobe PDF
639.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/950278
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact