In this paper we present results from the NEFOCAST project, funded by the Tuscany Region, aiming at detecting and estimating rainfall fields from the oppor-tunistic use of the rain-induced excess attenuation incurred in the downlink channel by a commercial DVB satellite signal. The attenuation is estimated by reverse-engineering the effects of the various propagation phenomena affecting the received signal, among which, in first place, the perturbations factors affecting geostationary orbits, such as the gravitational attraction from the moon and the sun and the inhomogeneity in Earth mass distribution and, secondly, the small-scale irregularities in the atmospheric refrac-tive index, causing rapid fluctuations in signal amplitude. The latter impairments, in particular, even if periodically counteracted by correction maneuvers, may give rise to significant departures of the actual satellite position from the nominal orbit. A further problem to deal with is the daily and seasonal random fluctuation of the rain height and altitude/size of the associated melting layer. All of the above issues lead to non-negligible random deviations from the dry nominal downlink attenuation, that can be misinter-preted as rain events. In this paper we show how to counteract these issues by employing two differentially-configured Kalman filters designed to track slow and fast changes of the received signal-to-noise ratio, so that the rain events can be reliably detected and the relevant rainfall rate estimated.

The NEFOCAST System for Detection and Estimation of Rainfall Fields by the Opportunistic Use of Broadcast Satellite Signals

Filippo Giannetti
Co-primo
Writing – Review & Editing
;
Marco Moretti
Co-primo
Writing – Review & Editing
;
Ruggero Reggiannini
Co-primo
Writing – Review & Editing
;
2019-01-01

Abstract

In this paper we present results from the NEFOCAST project, funded by the Tuscany Region, aiming at detecting and estimating rainfall fields from the oppor-tunistic use of the rain-induced excess attenuation incurred in the downlink channel by a commercial DVB satellite signal. The attenuation is estimated by reverse-engineering the effects of the various propagation phenomena affecting the received signal, among which, in first place, the perturbations factors affecting geostationary orbits, such as the gravitational attraction from the moon and the sun and the inhomogeneity in Earth mass distribution and, secondly, the small-scale irregularities in the atmospheric refrac-tive index, causing rapid fluctuations in signal amplitude. The latter impairments, in particular, even if periodically counteracted by correction maneuvers, may give rise to significant departures of the actual satellite position from the nominal orbit. A further problem to deal with is the daily and seasonal random fluctuation of the rain height and altitude/size of the associated melting layer. All of the above issues lead to non-negligible random deviations from the dry nominal downlink attenuation, that can be misinter-preted as rain events. In this paper we show how to counteract these issues by employing two differentially-configured Kalman filters designed to track slow and fast changes of the received signal-to-noise ratio, so that the rain events can be reliably detected and the relevant rainfall rate estimated.
2019
Giannetti, Filippo; Moretti, Marco; Reggiannini, Ruggero; Vaccaro, Attilio
File in questo prodotto:
File Dimensione Formato  
FINAL post-print.pdf

accesso aperto

Descrizione: Paper pubblicato
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri
Giannetti_950290.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.21 MB
Formato Adobe PDF
4.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/950290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact