This project aims at exploiting the wide-field and limiting-magnitude capabilities of the LSST to fully characterise the resolved stellar populations in/around six Local Group stellar systems of different morphological type at ~30 to ~400 kpc distance from us. We selected targets that host red giant branch (RGB) stars which are within the reach of Gaia and not yet (all) saturated with the LSST. We will use RR Lyrae stars, Cepheids, SX Phoenicis, delta Scuti stars and Long Period Variables, along with the Color Magnitude Diagram of the resolved stellar populations in these 6 systems to: i) trace their different stellar generations over a spatial extension and with a depth that only the LSST can achieve; ii) measure their distances using variable stars of different type/parent stellar population and the Tip of the RGB; iii) map their 3D structures up to the periphery of their halos; iv) search for tidal streams; and v) study their Star Formation Histories over unprecedented large fractions of their bodies. Our ultimate goals are to provide a complete picture of these nearby stellar systems all the way through to their periphery, and to directly link and cross-calibrate the Gaia and LSST projects.

The Gaia-LSST Synergy: resolved stellar populations in selected Local Group stellar systems

Musella, I.;Cignoni, M.;Marconi, M.;Ripepi, V.;
2018-01-01

Abstract

This project aims at exploiting the wide-field and limiting-magnitude capabilities of the LSST to fully characterise the resolved stellar populations in/around six Local Group stellar systems of different morphological type at ~30 to ~400 kpc distance from us. We selected targets that host red giant branch (RGB) stars which are within the reach of Gaia and not yet (all) saturated with the LSST. We will use RR Lyrae stars, Cepheids, SX Phoenicis, delta Scuti stars and Long Period Variables, along with the Color Magnitude Diagram of the resolved stellar populations in these 6 systems to: i) trace their different stellar generations over a spatial extension and with a depth that only the LSST can achieve; ii) measure their distances using variable stars of different type/parent stellar population and the Tip of the RGB; iii) map their 3D structures up to the periphery of their halos; iv) search for tidal streams; and v) study their Star Formation Histories over unprecedented large fractions of their bodies. Our ultimate goals are to provide a complete picture of these nearby stellar systems all the way through to their periphery, and to directly link and cross-calibrate the Gaia and LSST projects.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/951554
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact