Chronic hyperinsulinemia is both a marker and a cause for insulin resistance. This study analyzes the effect of long-term exposure to high insulin levels on the insulin-signaling pathway and glucose transport in cultured human myoblasts. Human myoblasts were grown in the presence of low (107 pmol/L, SkMC-L) or high (1430 pmol/L, SkMC-H) insulin concentrations for 3 weeks. Glucose transport, insulin receptor (IR), and IR substrate 1 (1RS1) phosphorylation, phosphatidylinositol 3'-kinase (PI3K) activity, as well as Akt-Ser473 phosphorylation have been investigated at the end of the incubation period and after a further short-term insulin stimulation. At the end of the incubation period, IR, IRS1, p85/PI3K, Akt, and GLUT4 protein expression levels were similar in both culture conditions. Basal glucose transport was similar in SkMC-L and SkMC-H, but after short-term insulin stimulation significantly increased (P < .01) only in SkMC-L. IR binding was down-regulated in SkMC-H (P < .01), but 1R and IRS1 tyrosine phosphorylation and PI3K activity were significantly higher (P < .01) in SkMC-H than SkMC-L. Despite increased PI3K activation, Akt-Ser473 phosphorylation was similar in SkMC-L and SkMC-H. After a short-term insulin stimulation (10 nmol/L insulin for 10 minutes), IR and IRS1 tyrosine phosphorylation, PI3K activation, and Akt-Ser473 phosphorylation significantly increased (P < .01 and P < .05 for Akt) in SkMC-L but not in SkMC-H. Serine phosphorylation of IRS1 was similar in SkMC-L and SkMC-H. Moreover, in the SkMC-H, insulin stimulation was associated with the inhibition of IRS1 tyrosine dephosphorylation (P < .05). In summary, continuous exposure of cultured myoblasts to high insulin levels induces a persistent up-regulation of IR, IRS1, and PI3K activity associated with the demodulation of insulin signaling. Moreover, the impairment of the insulin-signaling steps between PI3K and Akt is concomitant with the desensitization of glucose transport. These alterations may contribute to the derangement insulin-signaling pathway states of hyperinsulinemia such as obesity and type 2 diabetes. (c) 2005 Elsevier Inc. All rights reserved

Continually high insulin levels impair Akt phosphorylation and glucose transport in human myoblasts

DEL PRATO, STEFANO;
2005-01-01

Abstract

Chronic hyperinsulinemia is both a marker and a cause for insulin resistance. This study analyzes the effect of long-term exposure to high insulin levels on the insulin-signaling pathway and glucose transport in cultured human myoblasts. Human myoblasts were grown in the presence of low (107 pmol/L, SkMC-L) or high (1430 pmol/L, SkMC-H) insulin concentrations for 3 weeks. Glucose transport, insulin receptor (IR), and IR substrate 1 (1RS1) phosphorylation, phosphatidylinositol 3'-kinase (PI3K) activity, as well as Akt-Ser473 phosphorylation have been investigated at the end of the incubation period and after a further short-term insulin stimulation. At the end of the incubation period, IR, IRS1, p85/PI3K, Akt, and GLUT4 protein expression levels were similar in both culture conditions. Basal glucose transport was similar in SkMC-L and SkMC-H, but after short-term insulin stimulation significantly increased (P < .01) only in SkMC-L. IR binding was down-regulated in SkMC-H (P < .01), but 1R and IRS1 tyrosine phosphorylation and PI3K activity were significantly higher (P < .01) in SkMC-H than SkMC-L. Despite increased PI3K activation, Akt-Ser473 phosphorylation was similar in SkMC-L and SkMC-H. After a short-term insulin stimulation (10 nmol/L insulin for 10 minutes), IR and IRS1 tyrosine phosphorylation, PI3K activation, and Akt-Ser473 phosphorylation significantly increased (P < .01 and P < .05 for Akt) in SkMC-L but not in SkMC-H. Serine phosphorylation of IRS1 was similar in SkMC-L and SkMC-H. Moreover, in the SkMC-H, insulin stimulation was associated with the inhibition of IRS1 tyrosine dephosphorylation (P < .05). In summary, continuous exposure of cultured myoblasts to high insulin levels induces a persistent up-regulation of IR, IRS1, and PI3K activity associated with the demodulation of insulin signaling. Moreover, the impairment of the insulin-signaling steps between PI3K and Akt is concomitant with the desensitization of glucose transport. These alterations may contribute to the derangement insulin-signaling pathway states of hyperinsulinemia such as obesity and type 2 diabetes. (c) 2005 Elsevier Inc. All rights reserved
2005
Bertacca, A; Ciccarone, A; Cecchetti, P; Vianello, B; Laurenza, I; Maffei, M; Chiellini, C; DEL PRATO, Stefano; Benzi, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/95232
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact