This paper aims at providing a fresh look at semiparametric estimation theory and, in particular, at the Semiparametric Cramér-Rao Bound (SCRB). Semiparametric models are characterized by a finite-dimensional parameter vector of interest and by an infinite-dimensional nuisance function that is often related to an unspecified functional form of the density of the noise underlying the observations. We summarize the main motivations and the intuitive concepts about semiparametric models. Then we provide a new look at the classical estimation theory based on a geometrical Hilbert space-based approach. Finally, the semiparametric version of the Cramér-Rao Bound for the estimation of the finite-dimensional vector of the parameters of interest is provided.

A fresh look at the Semiparametric Cramér-Rao Bound

Fortunati, Stefano
Primo
Membro del Collaboration Group
;
Gini, Fulvio
Secondo
Membro del Collaboration Group
;
Greco, Maria
Membro del Collaboration Group
;
2018-01-01

Abstract

This paper aims at providing a fresh look at semiparametric estimation theory and, in particular, at the Semiparametric Cramér-Rao Bound (SCRB). Semiparametric models are characterized by a finite-dimensional parameter vector of interest and by an infinite-dimensional nuisance function that is often related to an unspecified functional form of the density of the noise underlying the observations. We summarize the main motivations and the intuitive concepts about semiparametric models. Then we provide a new look at the classical estimation theory based on a geometrical Hilbert space-based approach. Finally, the semiparametric version of the Cramér-Rao Bound for the estimation of the finite-dimensional vector of the parameters of interest is provided.
2018
9789082797015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/954072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact