We explore the evolution of an ultracold quantum gas of interacting fermions crossing from a Bardeen-Cooper-Schrieffer (BCS) superfluidity to a Bose-Einstein condensation (BEC) of molecular bosons in the presence of a tunable-range interaction among the fermions and of an artificial magnetic field, which can be used to simulate a pseudo-spin-orbit coupling (SOC) and to produce topological states. We find that the crossover is affected by a competition between the finite range of the interaction and the SOC and that the threshold λB for the topological transition is affected by the interactions only in the small pair size, BEC-like, regime. Below λB, we find persistence of universal behavior in the critical temperature, chemical potential, and condensate fraction, provided that the pair correlation length is used as a driving parameter. Above threshold, universality is lost in the regime of large pair sizes. Here, the limiting ground state departs from a weakly interacting BCS-like one so that a different description is required. Our results can be relevant in view of current experiments with cold atoms in optical cavities, where tunable-range effective atomic interactions can be engineered.

Interaction-range effects and universality in the BCS-BEC crossover of spin-orbit-coupled Fermi gases

Barsanti, M.
Secondo
Software
;
Chiofalo, M. L.
Ultimo
Investigation
2018-01-01

Abstract

We explore the evolution of an ultracold quantum gas of interacting fermions crossing from a Bardeen-Cooper-Schrieffer (BCS) superfluidity to a Bose-Einstein condensation (BEC) of molecular bosons in the presence of a tunable-range interaction among the fermions and of an artificial magnetic field, which can be used to simulate a pseudo-spin-orbit coupling (SOC) and to produce topological states. We find that the crossover is affected by a competition between the finite range of the interaction and the SOC and that the threshold λB for the topological transition is affected by the interactions only in the small pair size, BEC-like, regime. Below λB, we find persistence of universal behavior in the critical temperature, chemical potential, and condensate fraction, provided that the pair correlation length is used as a driving parameter. Above threshold, universality is lost in the regime of large pair sizes. Here, the limiting ground state departs from a weakly interacting BCS-like one so that a different description is required. Our results can be relevant in view of current experiments with cold atoms in optical cavities, where tunable-range effective atomic interactions can be engineered.
2018
Giambastiani, D.; Barsanti, M.; Chiofalo, M. L.
File in questo prodotto:
File Dimensione Formato  
P16GiambastianiChiofaloEPL18.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 438.22 kB
Formato Adobe PDF
438.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
EPL_Final.pdf

Open Access dal 01/10/2019

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 448.12 kB
Formato Adobe PDF
448.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/956082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact