Low-cost piezoresistive strain/pressure sensors with large working range, at the same time able to reliably detect ultralow strain (≤0.1%) and pressure (≤1 Pa), are one of the challenges that have still to be overcome for flexible piezoresistive materials toward personalized health-monitoring applications. In this work, we report on unprecedented, simultaneous detection of ultrasmall strain (0.1%, i.e., 10 μm displacement over 10 mm) and subtle pressure (20 Pa, i.e., a force of only 2 mN over an area of 1 cm2) in compression mode, coupled with a large working range (i.e., up to 60% for strain - 6 mm in displacement - and 50 kPa for pressure) using piezoresistive, flexible three-dimensional (3D) macroporous polydimethylsiloxane (pPDMS) foams decorated with pristine multiwalled carbon nanotubes (CNTs). pPDMS/CNT foams with pore size up to 500 μm (i.e., twice the size of those of commonly used foams, at least) and porosity of 77%, decorated with a nanostructured surface network of CNTs at densities ranging from 7.5 to 37 mg/cm3 are prepared using a low-cost and scalable process, through replica molding of sacrificial sugar templates and subsequent drop-casting of CNT ink. A thorough characterization shows that piezoresistive properties of the foams can be finely tuned by controlling the CNT density and reach an optimum at a CNT density of 25 mg/cm3, for which a maximum change of the material resistivity (e.g., ρ0/ρ50 = 4 at 50% strain) is achieved under compression. Further static and dynamic characterization of the pPDMS/CNT foams with 25 mg/cm3 of CNTs highlights that detection limits for strain and pressure are 0.03% (3 μm displacement over 10 mm) and 6 Pa (0.6 mN over an area of 1 cm2), respectively; moreover, good stability and limited hysteresis are apparent by cycling the foams with 255 compression-release cycles over the strain range of 0-60%, at different strain rates up to 10 mm/min. Our results on piezoresistive, flexible pPDMS/CNT foams pave the way toward breakthrough applications for personalized health care, though not limited to these, which have not been fully addressed to date with flexible strain/stress sensors.

Flexible Polydimethylsiloxane Foams Decorated with Multiwalled Carbon Nanotubes Enable Unprecedented Detection of Ultralow Strain and Pressure Coupled with a Large Working Range

Iglio, Rossella;Mariani, Stefano;Robbiano, Valentina;Barillaro, Giuseppe
Ultimo
2018-01-01

Abstract

Low-cost piezoresistive strain/pressure sensors with large working range, at the same time able to reliably detect ultralow strain (≤0.1%) and pressure (≤1 Pa), are one of the challenges that have still to be overcome for flexible piezoresistive materials toward personalized health-monitoring applications. In this work, we report on unprecedented, simultaneous detection of ultrasmall strain (0.1%, i.e., 10 μm displacement over 10 mm) and subtle pressure (20 Pa, i.e., a force of only 2 mN over an area of 1 cm2) in compression mode, coupled with a large working range (i.e., up to 60% for strain - 6 mm in displacement - and 50 kPa for pressure) using piezoresistive, flexible three-dimensional (3D) macroporous polydimethylsiloxane (pPDMS) foams decorated with pristine multiwalled carbon nanotubes (CNTs). pPDMS/CNT foams with pore size up to 500 μm (i.e., twice the size of those of commonly used foams, at least) and porosity of 77%, decorated with a nanostructured surface network of CNTs at densities ranging from 7.5 to 37 mg/cm3 are prepared using a low-cost and scalable process, through replica molding of sacrificial sugar templates and subsequent drop-casting of CNT ink. A thorough characterization shows that piezoresistive properties of the foams can be finely tuned by controlling the CNT density and reach an optimum at a CNT density of 25 mg/cm3, for which a maximum change of the material resistivity (e.g., ρ0/ρ50 = 4 at 50% strain) is achieved under compression. Further static and dynamic characterization of the pPDMS/CNT foams with 25 mg/cm3 of CNTs highlights that detection limits for strain and pressure are 0.03% (3 μm displacement over 10 mm) and 6 Pa (0.6 mN over an area of 1 cm2), respectively; moreover, good stability and limited hysteresis are apparent by cycling the foams with 255 compression-release cycles over the strain range of 0-60%, at different strain rates up to 10 mm/min. Our results on piezoresistive, flexible pPDMS/CNT foams pave the way toward breakthrough applications for personalized health care, though not limited to these, which have not been fully addressed to date with flexible strain/stress sensors.
Iglio, Rossella; Mariani, Stefano; Robbiano, Valentina; Strambini, Lucanos; Barillaro, Giuseppe
File in questo prodotto:
File Dimensione Formato  
ACSAMI_2018.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/956302
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 91
social impact