Arbuscular mycorrhizal fungi (AMF) are obligate symbionts, living in associations with the roots of most land plants. AMF produce wide networks of extraradical mycelium (ERM) of indeterminate length, spreading from host roots into the surrounding soil and establishing belowground interconnections among plants belonging to the same or to different taxa. Whether their lifespan and functionality are limited by host plant viability or can be extended beyond this limit is unknown. To address this issue, we performed time-course studies to investigate viability and functionality of ERM produced in an in vivo whole-plant system by Funneliformis mosseae and Rhizoglomus irregulare, after shoot detachment. Our data revealed that viability and functionality of F. mosseae and R. irregulare extraradical hyphae were uncoupled from host plant lifespan. Indeed, ERM spreading from roots of intact or shootless plants showed comparable levels of viability, similar structural traits and ability to establish mycorrhizal symbioses with new plants, as long as five months after shoot removal. Our findings expand the current knowledge on AMF biology and life cycle, providing data on ERM long-term survival in the soil of two Glomeracean species, functional to the prompt establishment of mycorrhizal symbioses and to the maintenance of soil biological fertility.

Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan

Pepe, Alessandra
Primo
;
Giovannetti, Manuela
Secondo
;
2018-01-01

Abstract

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts, living in associations with the roots of most land plants. AMF produce wide networks of extraradical mycelium (ERM) of indeterminate length, spreading from host roots into the surrounding soil and establishing belowground interconnections among plants belonging to the same or to different taxa. Whether their lifespan and functionality are limited by host plant viability or can be extended beyond this limit is unknown. To address this issue, we performed time-course studies to investigate viability and functionality of ERM produced in an in vivo whole-plant system by Funneliformis mosseae and Rhizoglomus irregulare, after shoot detachment. Our data revealed that viability and functionality of F. mosseae and R. irregulare extraradical hyphae were uncoupled from host plant lifespan. Indeed, ERM spreading from roots of intact or shootless plants showed comparable levels of viability, similar structural traits and ability to establish mycorrhizal symbioses with new plants, as long as five months after shoot removal. Our findings expand the current knowledge on AMF biology and life cycle, providing data on ERM long-term survival in the soil of two Glomeracean species, functional to the prompt establishment of mycorrhizal symbioses and to the maintenance of soil biological fertility.
2018
Pepe, Alessandra; Giovannetti, Manuela; Sbrana, Cristiana
File in questo prodotto:
File Dimensione Formato  
2018-LIFESPAN-SCIREP.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/959726
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 37
social impact