The measurement of chirality and its temporal evolution are crucial for the understanding of a large range of biological functions and chemical reactions. Steady-state circular dichroism (CD) is a standard analytical tool for measuring chirality in chemistry and biology. Nevertheless, its push into the ultrafast time domain and in the deep-ultraviolet has remained a challenge, with only some isolated reports of subnanosecond CD. Here, we present a broadband time-resolved CD spectrometer in the deep ultraviolet (UV) spectral range with femtosecond time resolution. The setup employs a photo-elastic modulator to achieve shot-to-shot polarization switching of a 20 kHz pulse train of broadband femtosecond deep-UV pulses (250–370 nm). The resulting sequence of alternating left-and right-circularly polarized probe pulses is employed in a pump-probe scheme with shot-to-shot dispersive detection and thus allows for the acquisition of broadband CD spectra of ground-and excited-state species. Through polarization scrambling of the probe pulses prior to detection, artifact-free static and transient CD spectra of enantiopure Ru bpy32 are successfully recorded with a sensitivity of <2 × 10−5 OD (≈0.7 mdeg). Due to its broadband deep-UV detection with unprecedented sensitivity, the measurement of ultrafast chirality changes in biological systems with amino-acid residues and peptides and of DNA oligomers is now feasible.
Ultrafast broadband circular dichroism in the deep ultraviolet
Zinna, Francesco;Lacour, Jérôme;
2019-01-01
Abstract
The measurement of chirality and its temporal evolution are crucial for the understanding of a large range of biological functions and chemical reactions. Steady-state circular dichroism (CD) is a standard analytical tool for measuring chirality in chemistry and biology. Nevertheless, its push into the ultrafast time domain and in the deep-ultraviolet has remained a challenge, with only some isolated reports of subnanosecond CD. Here, we present a broadband time-resolved CD spectrometer in the deep ultraviolet (UV) spectral range with femtosecond time resolution. The setup employs a photo-elastic modulator to achieve shot-to-shot polarization switching of a 20 kHz pulse train of broadband femtosecond deep-UV pulses (250–370 nm). The resulting sequence of alternating left-and right-circularly polarized probe pulses is employed in a pump-probe scheme with shot-to-shot dispersive detection and thus allows for the acquisition of broadband CD spectra of ground-and excited-state species. Through polarization scrambling of the probe pulses prior to detection, artifact-free static and transient CD spectra of enantiopure Ru bpy32 are successfully recorded with a sensitivity of <2 × 10−5 OD (≈0.7 mdeg). Due to its broadband deep-UV detection with unprecedented sensitivity, the measurement of ultrafast chirality changes in biological systems with amino-acid residues and peptides and of DNA oligomers is now feasible.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


