We introduce the notion of a holonomic D-module on a smooth (idealized) logarithmic scheme and show that Verdier duality can be extended to this context. In contrast to the classical case, the pushforward of a holonomic module along an open immersion is in general not holonomic. We introduce a “perverse” t-structure on the category of coherent logarithmic D-modules which makes the dualizing functor t-exact on holonomic modules. Conversely this t-exactness characterizes holonomic modules among all coherent logarithmic D-modules. We also introduce logarithmic versions of the Gabber and Kashiwara–Malgrange filtrations.

Holonomic and perverse logarithmic D-modules

Talpo, Mattia
2019-01-01

Abstract

We introduce the notion of a holonomic D-module on a smooth (idealized) logarithmic scheme and show that Verdier duality can be extended to this context. In contrast to the classical case, the pushforward of a holonomic module along an open immersion is in general not holonomic. We introduce a “perverse” t-structure on the category of coherent logarithmic D-modules which makes the dualizing functor t-exact on holonomic modules. Conversely this t-exactness characterizes holonomic modules among all coherent logarithmic D-modules. We also introduce logarithmic versions of the Gabber and Kashiwara–Malgrange filtrations.
2019
Koppensteiner, Clemens; Talpo, Mattia
File in questo prodotto:
File Dimensione Formato  
holonomics-final.pdf

Open Access dal 14/04/2021

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 395.21 kB
Formato Adobe PDF
395.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/964361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact