This paper presents the first reported data on the embedding of highly dielectric ceramic inclusions in a rubbery host medium as a means to increase the electromechanical material response for dielectric elastomer actuation. The studied polymer/ceramic composite, consisting of a silicone matrix in which titanium dioxide powder was dispersed, exhibited, in comparison with pure silicone, a decreased elastic modulus, as well as an increased dielectric constant. The measured low frequency permittivity resulted in accordance with several classical dielectric mixing rules. The use of this material as elastomeric dielectric for planar actuators enabled a reduction of the driving electric fields, so that a transverse strain of 11% at 10 V/μm and a transverse stress of 16.5 kPa at 9 V/μm were obtained. These levels of strain and stress were respectively more than eight and four times higher than the corresponding values generated with the pure polymer matrix for analogous electrical stimuli.

Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder

CARPI, FEDERICO;DE ROSSI, DANILO EMILIO
2005-01-01

Abstract

This paper presents the first reported data on the embedding of highly dielectric ceramic inclusions in a rubbery host medium as a means to increase the electromechanical material response for dielectric elastomer actuation. The studied polymer/ceramic composite, consisting of a silicone matrix in which titanium dioxide powder was dispersed, exhibited, in comparison with pure silicone, a decreased elastic modulus, as well as an increased dielectric constant. The measured low frequency permittivity resulted in accordance with several classical dielectric mixing rules. The use of this material as elastomeric dielectric for planar actuators enabled a reduction of the driving electric fields, so that a transverse strain of 11% at 10 V/μm and a transverse stress of 16.5 kPa at 9 V/μm were obtained. These levels of strain and stress were respectively more than eight and four times higher than the corresponding values generated with the pure polymer matrix for analogous electrical stimuli.
2005
Carpi, Federico; DE ROSSI, DANILO EMILIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/96694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact