The Electron Diusion Region (EDR) is the region where magnetic reconnection is initiated and electrons are energized. Because of experimental diculties, the structure of the EDR is still poorly understood. A key question is whether the EDR has a homogeneous or patchy structure. Here we report Magnetospheric MultiScale (MMS) novel spacecraft observations providing evidence of inhomogeneous current densities and energy conversion over a few electron inertial lengths within an EDR at the terrestrial magnetopause, suggesting that the EDR can be rather structured. These inhomogenenities are revealed through multi-point measurements because the spacecraft separation is comparable to a few electron inertial lengths, allowing the entire MMS tetrahedron to be within the EDR most of the time. These observations are consistent with recent high-resolution and low-noise kinetic simulations.
In situ spacecraft observations of a structured electron dffusion region during magnetopause reconnection
Giulia Cozzani
Co-primo
;F. CalifanoCo-primo
;
2019-01-01
Abstract
The Electron Diusion Region (EDR) is the region where magnetic reconnection is initiated and electrons are energized. Because of experimental diculties, the structure of the EDR is still poorly understood. A key question is whether the EDR has a homogeneous or patchy structure. Here we report Magnetospheric MultiScale (MMS) novel spacecraft observations providing evidence of inhomogeneous current densities and energy conversion over a few electron inertial lengths within an EDR at the terrestrial magnetopause, suggesting that the EDR can be rather structured. These inhomogenenities are revealed through multi-point measurements because the spacecraft separation is comparable to a few electron inertial lengths, allowing the entire MMS tetrahedron to be within the EDR most of the time. These observations are consistent with recent high-resolution and low-noise kinetic simulations.File | Dimensione | Formato | |
---|---|---|---|
Cozzani PRE.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.21 MB
Formato
Adobe PDF
|
3.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.