A probabilistic representation formula for general systems of linear parabolic equations, coupled only through the zero-order term, is given. On this basis, an implicit probabilistic representation for the vorticity in a three-dimensional viscous fluid (described by the Navier–Stokes equations) is carefully analysed, and a theorem of local existence and uniqueness is proved. The aim of the probabilistic representation is to provide an extension of the Lagrangian formalism from the non-viscous (Euler equations) to the viscous case. As an application, a continuation principle, similar to the Beale–Kato–Majda blow-up criterion, is proved.

A probabilistic representation for the vorticity of a three-dimensional viscous fluid and for general systems of parabolic equations

FLANDOLI, FRANCO;ROMITO, MARCO
2005-01-01

Abstract

A probabilistic representation formula for general systems of linear parabolic equations, coupled only through the zero-order term, is given. On this basis, an implicit probabilistic representation for the vorticity in a three-dimensional viscous fluid (described by the Navier–Stokes equations) is carefully analysed, and a theorem of local existence and uniqueness is proved. The aim of the probabilistic representation is to provide an extension of the Lagrangian formalism from the non-viscous (Euler equations) to the viscous case. As an application, a continuation principle, similar to the Beale–Kato–Majda blow-up criterion, is proved.
2005
Busnello, B; Flandoli, Franco; Romito, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/97798
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact