We investigate the rational approximation of fractional powers of unbounded positive operators attainable with a specific integral representation of the operator function. We provide accurate error bounds by exploiting classical results in approximation theory involving Padé approximants. The analysis improves some existing results and the numerical experiments proves its accuracy. "The research that led to the present paper was partially supported by a grant of the group GNCS of INdAM "

Rational approximations to fractional powers of self-adjoint positive operators

Lidia Aceto
Primo
;
2019-01-01

Abstract

We investigate the rational approximation of fractional powers of unbounded positive operators attainable with a specific integral representation of the operator function. We provide accurate error bounds by exploiting classical results in approximation theory involving Padé approximants. The analysis improves some existing results and the numerical experiments proves its accuracy. "The research that led to the present paper was partially supported by a grant of the group GNCS of INdAM "
2019
Aceto, Lidia; Paolo, Novati
File in questo prodotto:
File Dimensione Formato  
2019_NumerMath.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 516.05 kB
Formato Adobe PDF
516.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1807.10086.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 236.4 kB
Formato Adobe PDF
236.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/988797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact