The aim of this paper is to propose a shape-based method in which the concept of Bezier curve is used to efficiently design the three-dimensional interplanetary trajectory of a spacecraft whose primary propulsion system is an Electric Solar Wind Sail. The latter is a propellantless propulsion concept that consists of a spinning grid of tethers, kept at a high positive potential by a power source and maintained stretched by the centrifugal force. The proposed approach approximates the time variation of the components of the spacecraft position vector using a Bezier curve function, whose geometric coefficients are calculated by optimizing the total flight time with standard numerical methods and enforcing the boundary conditions of a typical interplanetary rendezvous mission. The paper also discusses a geometrical approach to include, in the optimization process, the propulsive acceleration vector constraints obtained with the latest Electric Solar Wind Sail thrust model.

Electric Sail Trajectory Design with Bezier Curve-based Shaping Approach

Mengali G
Secondo
Validation
;
Quarta A
Penultimo
Writing – Original Draft Preparation
;
2019-01-01

Abstract

The aim of this paper is to propose a shape-based method in which the concept of Bezier curve is used to efficiently design the three-dimensional interplanetary trajectory of a spacecraft whose primary propulsion system is an Electric Solar Wind Sail. The latter is a propellantless propulsion concept that consists of a spinning grid of tethers, kept at a high positive potential by a power source and maintained stretched by the centrifugal force. The proposed approach approximates the time variation of the components of the spacecraft position vector using a Bezier curve function, whose geometric coefficients are calculated by optimizing the total flight time with standard numerical methods and enforcing the boundary conditions of a typical interplanetary rendezvous mission. The paper also discusses a geometrical approach to include, in the optimization process, the propulsive acceleration vector constraints obtained with the latest Electric Solar Wind Sail thrust model.
2019
Huo, M; Mengali, G; Quarta, A; Qi, N
File in questo prodotto:
File Dimensione Formato  
AESCTE_88_2019.pdf

solo utenti autorizzati

Descrizione: versione finale pubblicata
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
[2019] Electric sail trajectory design with Bezier curve-based shaping approach.pdf

accesso aperto

Descrizione: Versione finale identica in tutto a quella pubblicata fuorché nell’impaginazione editoriale.
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.68 MB
Formato Adobe PDF
2.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/990910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 39
social impact