Dual fluorescence is an anomalous photophysical phenomenon observed in very few chromophores in which a two-color radiative process occurs that involves two distinct excited electronic states. To date its observation was linked either to electronic rearrangement of an excited fluorophore leading to two conformers with distinct emissive properties, or to a photochemical modification leading to different fluorescent species. In both cases, emission originates from the lowest excited state of the resulting molecular configurations, in line with the so-called Kasha's rule. We report here a combined theoretical and spectroscopic study showing, for the first time, an anti-Kasha dual-emission mechanism, in which simultaneous two-color emission takes place from the first and second excited state of a coumarin derivative. We argue that the observed environmental sensitivity of this peculiar optical response makes the present compound ideally suited for biosensing applications in living cells.

Dual Fluorescence through Kasha's Rule Breaking: An Unconventional Photomechanism for Intracellular Probe Design

Signore G;Bizzarri R
2015-01-01

Abstract

Dual fluorescence is an anomalous photophysical phenomenon observed in very few chromophores in which a two-color radiative process occurs that involves two distinct excited electronic states. To date its observation was linked either to electronic rearrangement of an excited fluorophore leading to two conformers with distinct emissive properties, or to a photochemical modification leading to different fluorescent species. In both cases, emission originates from the lowest excited state of the resulting molecular configurations, in line with the so-called Kasha's rule. We report here a combined theoretical and spectroscopic study showing, for the first time, an anti-Kasha dual-emission mechanism, in which simultaneous two-color emission takes place from the first and second excited state of a coumarin derivative. We argue that the observed environmental sensitivity of this peculiar optical response makes the present compound ideally suited for biosensing applications in living cells.
2015
Brancato, G; Signore, G; Neyroz, P; Polli, D; Cerullo, G; Abbandonato, G; Nucara, L; Barone, V; Beltram, F; Bizzarri, R
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/991291
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 76
social impact