In this study, we investigated the interaction of nanoparticles, such as CdSe/ZnS quantum dots (QDs), with the marine diatom Phaeodactylum tricornutum and the green alga Dunaliella tertiolecta, as biological models in the marine environment. Fluorescence kinetics measurements indicated that 30 min after dispersion in seawater QDs lost the 60% of the initial emission intensity, possibly due to the occurrence of aggregation processes. However, the presence of algae seemed to mitigate this effect. By using confocal microscopy, we highlighted the presence of QDs adsorbed on the surface of both algae, but not inside the cells. The toxicity of QDs was evaluated in terms of inhibition of growth rate, oxidative stress, and lipid peroxidation. QDs in the range of 1-2.5 nM gradually inhibited the growth rate of P. tricornutum and increased the oxidative stress, as evinced by the increase in lipid peroxidation, reactive oxygen species (ROS) production and activity of two main antioxidant enzymes (superoxide dismutase and catalase). On the contrary, QDs did not inhibit the growth rate of D. tertiolecta, at most a modest stimulation was observed in the range of 0.5-2 nM, suggesting a hormetic response. No effect in the parameters indicating oxidative stress was observed in the green alga. In conclusion our results showed that the biological effects were species-specific. (c) 2013 Elsevier B.V. All rights reserved.

Interaction of CdSe/ZnS quantum dots with the marine diatom Phaeodactylum tricornutum and the green alga Dunaliella tertiolecta: A biophysical approach

Bizzarri R;
2013-01-01

Abstract

In this study, we investigated the interaction of nanoparticles, such as CdSe/ZnS quantum dots (QDs), with the marine diatom Phaeodactylum tricornutum and the green alga Dunaliella tertiolecta, as biological models in the marine environment. Fluorescence kinetics measurements indicated that 30 min after dispersion in seawater QDs lost the 60% of the initial emission intensity, possibly due to the occurrence of aggregation processes. However, the presence of algae seemed to mitigate this effect. By using confocal microscopy, we highlighted the presence of QDs adsorbed on the surface of both algae, but not inside the cells. The toxicity of QDs was evaluated in terms of inhibition of growth rate, oxidative stress, and lipid peroxidation. QDs in the range of 1-2.5 nM gradually inhibited the growth rate of P. tricornutum and increased the oxidative stress, as evinced by the increase in lipid peroxidation, reactive oxygen species (ROS) production and activity of two main antioxidant enzymes (superoxide dismutase and catalase). On the contrary, QDs did not inhibit the growth rate of D. tertiolecta, at most a modest stimulation was observed in the range of 0.5-2 nM, suggesting a hormetic response. No effect in the parameters indicating oxidative stress was observed in the green alga. In conclusion our results showed that the biological effects were species-specific. (c) 2013 Elsevier B.V. All rights reserved.
2013
Morelli, E; Salvadori, E; Bizzarri, R; Cioni, P; Gabellieri, E
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/991301
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 38
social impact