Reversible photoswitching has been proposed as a way to identify molecules that are present in small numbers over a large, non-switching, background. This approach, called optical-lock-indetection (OLID) requires the deterministic control of the fluorescence of a photochromic emitter through optical modulation between a bright (on) and a dark state (off). OLID yields a high-contrast map where the switching molecules are pinpointed, but the fractional intensities of the emitters are not returned. The present work presents a modified OLID approach (quantitative OLID or qOLID) that yields quantitative information of the switching (f(SW)) and non-switching (f(NS)) components. After the validation of the method with a sample dataset and image sequence, we apply qOLID to measurements in cells that transiently express the photochromic protein EYQ1. We show that qOLID is efficient in separating the modulated from the non-modulated signal, the latter deriving from background/autofluorescence or fluorophores emitting in the same spectral region. Finally, we apply qOLID to Forster (Fluorescence) Resonance Energy Transfer (FRET) imaging. We here demonstrate that qOLID is able to highlight the distribution of FRET intensity in a sample by using a photochromic donor and a non-photochromic acceptor.

Quantitative optical lock-in detection for quantitative imaging of switchable and non-switchable components

Signore G;Bizzarri R
2016-01-01

Abstract

Reversible photoswitching has been proposed as a way to identify molecules that are present in small numbers over a large, non-switching, background. This approach, called optical-lock-indetection (OLID) requires the deterministic control of the fluorescence of a photochromic emitter through optical modulation between a bright (on) and a dark state (off). OLID yields a high-contrast map where the switching molecules are pinpointed, but the fractional intensities of the emitters are not returned. The present work presents a modified OLID approach (quantitative OLID or qOLID) that yields quantitative information of the switching (f(SW)) and non-switching (f(NS)) components. After the validation of the method with a sample dataset and image sequence, we apply qOLID to measurements in cells that transiently express the photochromic protein EYQ1. We show that qOLID is efficient in separating the modulated from the non-modulated signal, the latter deriving from background/autofluorescence or fluorophores emitting in the same spectral region. Finally, we apply qOLID to Forster (Fluorescence) Resonance Energy Transfer (FRET) imaging. We here demonstrate that qOLID is able to highlight the distribution of FRET intensity in a sample by using a photochromic donor and a non-photochromic acceptor.
2016
Abbandonato, G; Storti, B; Signore, G; Beltram, F; Bizzarri, R
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/991347
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact