Multi-access Edge Computing (MEC) brings data and computational resources near mobile users, with the ultimate goal ofreducing latency, improving resource utilization and leveraging context- and radio-awareness. Relocation policies for applicationsin the MEC environment are necessary to guarantee its effectiveness and performance, and can use a multitude of different data(user position and direction, availability of MEC services and computation resources, etc.). In this paper, we advocate using deepreinforcement learning to relocate applications in MEC scenarios, by having MEC learn during the evolution of the sytem. Weshow the feasibility of this approach and highlight its benefits via simulation, also presenting an environment which can fosterfuture research on this topic.

Using Deep Reinforcement Learning for Application Relocation in Multi-access Edge Computing

G. Nardini;A. Virdis;G. Stea
2019-01-01

Abstract

Multi-access Edge Computing (MEC) brings data and computational resources near mobile users, with the ultimate goal ofreducing latency, improving resource utilization and leveraging context- and radio-awareness. Relocation policies for applicationsin the MEC environment are necessary to guarantee its effectiveness and performance, and can use a multitude of different data(user position and direction, availability of MEC services and computation resources, etc.). In this paper, we advocate using deepreinforcement learning to relocate applications in MEC scenarios, by having MEC learn during the evolution of the sytem. Weshow the feasibility of this approach and highlight its benefits via simulation, also presenting an environment which can fosterfuture research on this topic.
2019
De Vita, F.; Nardini, G.; Virdis, A.; Bruneo, D.; Puliafito, A.; Stea, G.
File in questo prodotto:
File Dimensione Formato  
IEEE_Comm_Std_Magazine__postprint.pdf

accesso aperto

Descrizione: Versione accettata post revisione
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 856.91 kB
Formato Adobe PDF
856.91 kB Adobe PDF Visualizza/Apri
2019 ComStandMag.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 611.15 kB
Formato Adobe PDF
611.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/991730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact