In this study, the co-digestion of food waste and activated sludge was evaluated in a two-stage anaerobic system and compared to the traditional single-stage process. The two-stage system was composed by two reactors connected in series able to perform the fermentative and the methanogenic phases separated. Experiments were carried out in semi-continuous mode under mesophilic conditions (37 °C). The two-stage technology achieved an overall improvement of the anaerobic performances. Results highlighted an increase in biogas production and volatile solids degradation of 26% and 9%, respectively. Considering the whole two-stage system, i.e. the sum of the biogas productions of the first and the second digester, these percentages increased up to 35.0%. Concerning gas quality, the two-stage system achieved a hydrogen rich biogas in the first fermentative reactor and an improvement of methane content in the second methanogenic digester. The average methane content shifted from 61.2% to 70.1%. The highest methane production of the two-stage process was due to improved substrate hydrolysis, with increased amounts of volatile fatty acids made readily available in the second stage.
Comparison of single-stage and two-stage anaerobic Co-Digestion of food waste and activated sludge for hydrogen and methane production
Pecorini, I.
Secondo
;Iannelli, R.Ultimo
2019-01-01
Abstract
In this study, the co-digestion of food waste and activated sludge was evaluated in a two-stage anaerobic system and compared to the traditional single-stage process. The two-stage system was composed by two reactors connected in series able to perform the fermentative and the methanogenic phases separated. Experiments were carried out in semi-continuous mode under mesophilic conditions (37 °C). The two-stage technology achieved an overall improvement of the anaerobic performances. Results highlighted an increase in biogas production and volatile solids degradation of 26% and 9%, respectively. Considering the whole two-stage system, i.e. the sum of the biogas productions of the first and the second digester, these percentages increased up to 35.0%. Concerning gas quality, the two-stage system achieved a hydrogen rich biogas in the first fermentative reactor and an improvement of methane content in the second methanogenic digester. The average methane content shifted from 61.2% to 70.1%. The highest methane production of the two-stage process was due to improved substrate hydrolysis, with increased amounts of volatile fatty acids made readily available in the second stage.File | Dimensione | Formato | |
---|---|---|---|
Manuscript_rene.pdf
accesso aperto
Descrizione: Manuscript
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.