The vacuum expectation values of Wilson line operators $<W(L)>$ in the Chern-Simons theory are computed to second order of perturbation theory. The meaning of the framing procedure for knots is analyzed in the context of the Chern-Simons field theory. The relation between $<W(L)>$ and the link invariant polynomials is discussed. We derive an explicit analytic expression for the second coefficient of the Alexander-Conway polynomial, which is related to the ARF and Casson invariants. We present also some new relations between the HOMFLY coefficients.
Autori interni: | ||
Autori: | Guadagnini, Enore; Martellini, M; Mintchev, M. | |
Titolo: | Wilson lines in Chern-Simons theory and link invariants | |
Anno del prodotto: | 1990 | |
Digital Object Identifier (DOI): | 10.1016/0550-3213(90)90124-V | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.