The vacuum expectation values of Wilson line operators $<W(L)>$ in the Chern-Simons theory are computed to second order of perturbation theory. The meaning of the framing procedure for knots is analyzed in the context of the Chern-Simons field theory. The relation between $<W(L)>$ and the link invariant polynomials is discussed. We derive an explicit analytic expression for the second coefficient of the Alexander-Conway polynomial, which is related to the ARF and Casson invariants. We present also some new relations between the HOMFLY coefficients.

Wilson lines in Chern-Simons theory and link invariants

GUADAGNINI, ENORE;
1990

Abstract

The vacuum expectation values of Wilson line operators $$ in the Chern-Simons theory are computed to second order of perturbation theory. The meaning of the framing procedure for knots is analyzed in the context of the Chern-Simons field theory. The relation between $$ and the link invariant polynomials is discussed. We derive an explicit analytic expression for the second coefficient of the Alexander-Conway polynomial, which is related to the ARF and Casson invariants. We present also some new relations between the HOMFLY coefficients.
Guadagnini, Enore; Martellini, M; Mintchev, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/9925
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 173
  • ???jsp.display-item.citation.isi??? 178
social impact