Hydrogen sulfide (H2S) evokes vascular effects through several mechanisms including in wide part the activation of some ion channels such as ATP-sensitive potassium (KATP) channels and voltage-gated Kv7 potassium channels. Electrophysiological methods are very accurate, but they require high expertise and high specialized equipment. A more manageable fluorimetric technique which allows to record the membrane potential variations by the employment of an anionic bis-oxonol dye named DiBac4(3) with the administration of different blockers of several potassium channels could be useful to discover the targets of H2S-induced vascular hyperpolarization. Coupled with this technique, a fluorimetric detection (by the use of WSP-1 dye) of H2S generation in human vascular smooth muscle cells after H2S-donor administration could confirm the ability of these molecules to evoke the hyperpolarizing effect through the H2S release.

Vascular effects of H2S-donors: Fluorimetric detection of H2S generation and ion channel activation in human aortic smooth muscle cells

Martelli A.
Primo
;
Citi V.
Secondo
;
Calderone V.
Ultimo
2019-01-01

Abstract

Hydrogen sulfide (H2S) evokes vascular effects through several mechanisms including in wide part the activation of some ion channels such as ATP-sensitive potassium (KATP) channels and voltage-gated Kv7 potassium channels. Electrophysiological methods are very accurate, but they require high expertise and high specialized equipment. A more manageable fluorimetric technique which allows to record the membrane potential variations by the employment of an anionic bis-oxonol dye named DiBac4(3) with the administration of different blockers of several potassium channels could be useful to discover the targets of H2S-induced vascular hyperpolarization. Coupled with this technique, a fluorimetric detection (by the use of WSP-1 dye) of H2S generation in human vascular smooth muscle cells after H2S-donor administration could confirm the ability of these molecules to evoke the hyperpolarizing effect through the H2S release.
2019
Martelli, A.; Citi, V.; Calderone, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/992777
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact