Spectroscopic and mass spectrometric analytical techniques were used to characterise two naturally aged Winsor & Newton (W&N) Winsor Green (phthalocyanine green, PG7) artists’ oil colour paint swatches dating to 1993 and 2003. Infrared and Energy Dispersive X-ray (EDX) analysis indicated that the swatches were of closely similar composition, yet the swatch from 2003 was water-sensitive whilst the swatch from 1993 was not. Water-sensitivity is a conservation challenge associated with significant numbers of modern oil paintings and this study aimed to further develop our understanding of the molecular causes of water sensitivity. SEM elemental mapping of samples taken from both swatches provided no indication for the formation of epsomite – a known cause of water sensitivity in some modern oil paintings. Liquid chromatography coupled with mass spectrometry (HPLC-MS) and gas chromatography coupled with mass spectrometry (GC-MS) also revealed very similar qualitative-quantitative composition in terms of unbound and esterified medium fractions. The polymeric network was investigated using analytical pyrolysis. A combination of flash pyrolysis coupled with gas chromatography mass spectrometry (Py-GC-MS) together with evolved gas analysis mass spectrometry (EGA-MS) revealed that the polymeric material was relatively more abundant in the non-water-sensitive paint. This is the first multi-analytical study that has demonstrated a correlation between water-sensitivity and the degree of polymerisation of the oil medium; independent of other known causes of water-sensitivity.

The role of the polymeric network in the water sensitivity of modern oil paints

La Nasa J.;Degano I.;Bonaduce I.
Ultimo
2019-01-01

Abstract

Spectroscopic and mass spectrometric analytical techniques were used to characterise two naturally aged Winsor & Newton (W&N) Winsor Green (phthalocyanine green, PG7) artists’ oil colour paint swatches dating to 1993 and 2003. Infrared and Energy Dispersive X-ray (EDX) analysis indicated that the swatches were of closely similar composition, yet the swatch from 2003 was water-sensitive whilst the swatch from 1993 was not. Water-sensitivity is a conservation challenge associated with significant numbers of modern oil paintings and this study aimed to further develop our understanding of the molecular causes of water sensitivity. SEM elemental mapping of samples taken from both swatches provided no indication for the formation of epsomite – a known cause of water sensitivity in some modern oil paintings. Liquid chromatography coupled with mass spectrometry (HPLC-MS) and gas chromatography coupled with mass spectrometry (GC-MS) also revealed very similar qualitative-quantitative composition in terms of unbound and esterified medium fractions. The polymeric network was investigated using analytical pyrolysis. A combination of flash pyrolysis coupled with gas chromatography mass spectrometry (Py-GC-MS) together with evolved gas analysis mass spectrometry (EGA-MS) revealed that the polymeric material was relatively more abundant in the non-water-sensitive paint. This is the first multi-analytical study that has demonstrated a correlation between water-sensitivity and the degree of polymerisation of the oil medium; independent of other known causes of water-sensitivity.
2019
La Nasa, J.; Lee, J.; Degano, I.; Burnstock, A.; van den Berg, K. J.; Ormsby, B.; Bonaduce, I.
File in questo prodotto:
File Dimensione Formato  
s41598-019-39963-z.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/993241
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact