The intramolecular hydrogen bond formed between a protonated amine and a neighboring H-bond acceptor group in the side chain of amodiaquine and isoquine is thought to play an important role in their antimalarial activities. Here we describe isoquine-based compounds in which the intramolecular H-bond is mimicked by a methylene linker. The antimalarial activities of the resulting benzoxazines, their isosteric tetrahydroquinazoline derivatives, and febrifugine-based 1,3-quinazolin-4-ones were examined in vitro (against Plasmodium falciparum) and in vivo (against Plasmodium berghei). Compounds 6b,c caused modest inhibition of chloroquine transport via the parasite's chloroquine resistance transporter (PfCRT) in a Xenopus laevis oocyte expression system. In silico predictions and experimental evaluation of selected drug-like properties were also performed on compounds 6b,c. Compound 6c emerged from this work as the most promising analogue of the series; it possessed low toxicity and good antimalarial activity when administered orally to P. berghei-infected mice. © 2012 American Chemical Society.
Mimicking the intramolecular hydrogen bond: Synthesis, biological evaluation, andmolecular modeling of benzoxazines and quinazolines as potential antimalarial agents
Camodeca C.Secondo
;Brogi S.;
2012-01-01
Abstract
The intramolecular hydrogen bond formed between a protonated amine and a neighboring H-bond acceptor group in the side chain of amodiaquine and isoquine is thought to play an important role in their antimalarial activities. Here we describe isoquine-based compounds in which the intramolecular H-bond is mimicked by a methylene linker. The antimalarial activities of the resulting benzoxazines, their isosteric tetrahydroquinazoline derivatives, and febrifugine-based 1,3-quinazolin-4-ones were examined in vitro (against Plasmodium falciparum) and in vivo (against Plasmodium berghei). Compounds 6b,c caused modest inhibition of chloroquine transport via the parasite's chloroquine resistance transporter (PfCRT) in a Xenopus laevis oocyte expression system. In silico predictions and experimental evaluation of selected drug-like properties were also performed on compounds 6b,c. Compound 6c emerged from this work as the most promising analogue of the series; it possessed low toxicity and good antimalarial activity when administered orally to P. berghei-infected mice. © 2012 American Chemical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.