Complex arithmetic random waves are stationary Gaussian complex-valued solutions of the Helmholtz equation on the two-dimensional flat torus. We use Wiener-Itô chaotic expansions in order to derive a complete characterization of the second order high-energy behaviour of the total number of phase singularities of these functions. Our main result is that, while such random quantities verify a universal law of large numbers, they also exhibit non-universal and non-central second order fluctuations that are dictated by the arithmetic nature of the underlying spectral measures. Such fluctuations are qualitatively consistent with the cancellation phenomena predicted by Berry (2002) in the case of complex random waves on compact planar domains. Our results extend to the complex setting recent pathbreaking findings by Rudnick and Wigman (2008), Krishnapur, Kurlberg and Wigman (2013) and Marinucci, Peccati, Rossi and Wigman (2016). The exact asymptotic characterization of the variance is based on a fine analysis of the Kac-Rice kernel around the origin, as well as on a novel use of combinatorial moment formulae for controlling long-range weak correlations. As a by-product of our analysis, we also deduce explicit bounds in smooth distances for the second order non-central results evoked above.

Phase singularities in complex arithmetic random waves

Rossi, Maurizia
2019-01-01

Abstract

Complex arithmetic random waves are stationary Gaussian complex-valued solutions of the Helmholtz equation on the two-dimensional flat torus. We use Wiener-Itô chaotic expansions in order to derive a complete characterization of the second order high-energy behaviour of the total number of phase singularities of these functions. Our main result is that, while such random quantities verify a universal law of large numbers, they also exhibit non-universal and non-central second order fluctuations that are dictated by the arithmetic nature of the underlying spectral measures. Such fluctuations are qualitatively consistent with the cancellation phenomena predicted by Berry (2002) in the case of complex random waves on compact planar domains. Our results extend to the complex setting recent pathbreaking findings by Rudnick and Wigman (2008), Krishnapur, Kurlberg and Wigman (2013) and Marinucci, Peccati, Rossi and Wigman (2016). The exact asymptotic characterization of the variance is based on a fine analysis of the Kac-Rice kernel around the origin, as well as on a novel use of combinatorial moment formulae for controlling long-range weak correlations. As a by-product of our analysis, we also deduce explicit bounds in smooth distances for the second order non-central results evoked above.
2019
Dalmao, Federico; Nourdin, Ivan; Peccati, Giovanni; Rossi, Maurizia
File in questo prodotto:
File Dimensione Formato  
19-EJP321.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 606.05 kB
Formato Adobe PDF
606.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/993661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 13
social impact