Approximate synthesis is a recent trend in logic synthesis that changes some outputs of a logic specification to take advantage of error tolerance of some applications and reduce complexity and consumption of the final implementation. We propose a new approach to approximate synthesis of combinational logic where we derive its closest symmetric approximation, i.e., the symmetric function obtained by injecting the minimum number of errors in the original function. Since BDDs of totally symmetric functions are quite compact, this approach is particularly convenient for BDD-based implementations, such as networks of MUXes directly mapped from BDDs. Our contribution is twofold: first we propose a polynomial algorithm for computing the closest symmetric approximation of an incompletely specified Boolean function with an unbounded number of errors; then we discuss strategies to achieve partial symmetrization of the original specification while satisfying given error bounds. Experimental results on classical and new benchmarks confirm the efficacy of the proposed approach.

Approximate Logic Synthesis by Symmetrization

Bernasconi A.;
2019-01-01

Abstract

Approximate synthesis is a recent trend in logic synthesis that changes some outputs of a logic specification to take advantage of error tolerance of some applications and reduce complexity and consumption of the final implementation. We propose a new approach to approximate synthesis of combinational logic where we derive its closest symmetric approximation, i.e., the symmetric function obtained by injecting the minimum number of errors in the original function. Since BDDs of totally symmetric functions are quite compact, this approach is particularly convenient for BDD-based implementations, such as networks of MUXes directly mapped from BDDs. Our contribution is twofold: first we propose a polynomial algorithm for computing the closest symmetric approximation of an incompletely specified Boolean function with an unbounded number of errors; then we discuss strategies to achieve partial symmetrization of the original specification while satisfying given error bounds. Experimental results on classical and new benchmarks confirm the efficacy of the proposed approach.
2019
978-3-9819263-2-3
File in questo prodotto:
File Dimensione Formato  
ApproxSymm.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 228.95 kB
Formato Adobe PDF
228.95 kB Adobe PDF Visualizza/Apri
Bernasconi_994902.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 119.89 kB
Formato Adobe PDF
119.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/994902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact