Approximate synthesis is a recent trend in logic synthesis that changes some outputs of a logic specification to take advantage of error tolerance of some applications and reduce complexity and consumption of the final implementation. We propose a new approach to approximate synthesis of combinational logic where we derive its closest symmetric approximation, i.e., the symmetric function obtained by injecting the minimum number of errors in the original function. Since BDDs of totally symmetric functions are quite compact, this approach is particularly convenient for BDD-based implementations, such as networks of MUXes directly mapped from BDDs. Our contribution is twofold: first we propose a polynomial algorithm for computing the closest symmetric approximation of an incompletely specified Boolean function with an unbounded number of errors; then we discuss strategies to achieve partial symmetrization of the original specification while satisfying given error bounds. Experimental results on classical and new benchmarks confirm the efficacy of the proposed approach.
Approximate Logic Synthesis by Symmetrization
Bernasconi A.;
2019-01-01
Abstract
Approximate synthesis is a recent trend in logic synthesis that changes some outputs of a logic specification to take advantage of error tolerance of some applications and reduce complexity and consumption of the final implementation. We propose a new approach to approximate synthesis of combinational logic where we derive its closest symmetric approximation, i.e., the symmetric function obtained by injecting the minimum number of errors in the original function. Since BDDs of totally symmetric functions are quite compact, this approach is particularly convenient for BDD-based implementations, such as networks of MUXes directly mapped from BDDs. Our contribution is twofold: first we propose a polynomial algorithm for computing the closest symmetric approximation of an incompletely specified Boolean function with an unbounded number of errors; then we discuss strategies to achieve partial symmetrization of the original specification while satisfying given error bounds. Experimental results on classical and new benchmarks confirm the efficacy of the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
ApproxSymm.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
228.95 kB
Formato
Adobe PDF
|
228.95 kB | Adobe PDF | Visualizza/Apri |
Bernasconi_994902.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
119.89 kB
Formato
Adobe PDF
|
119.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.