Serotonin (5-HT)-releasing fibers show substantial structural plasticity in response to genetically induced changes in 5-HT content. However, whether 5-HT fibers appear malleable also following clinically relevant variations in 5-HT levels that may occur throughout an individual's life has not been investigated. Here, using confocal imaging and 3D modeling analysis in Tph2GFP knock-in mice, we show that chronic administration of the antidepressant fluoxetine dramatically affects the morphology of 5-HT fibers innervating the dorsal and ventral hippocampus resulting in a reduced density of fibers. Importantly, GFP fluorescence levels appeared unaffected in the somata of both dorsal and median raphe 5-HT neurons, arguing against potential fluoxetine-mediated down-regulation of the Tph2 promoter driving GFP expression in the Tph2GFP mouse model. In keeping with this notion, mice bearing the pan-serotonergic driver Pet1-Cre partnered with a Cre-responsive tdTomato allele also showed similar morphological alterations in hippocampal 5-HT circuitry following chronic fluoxetine treatment. Moreover 5-HT fibers innervating the cortex showed proper density and no overt morphological disorganization, indicating that the reported fluoxetine-induced rearrangements were hippocampus specific. On the whole, these data suggest that 5-HT fibers are shaped in response to subtle changes of 5-HT homeostasis and may provide a structural basis by which antidepressants exert their therapeutic effect.

Fluoxetine Induces Morphological Rearrangements of Serotonergic Fibers in the Hippocampus

Nazzi S.;Maddaloni G.;Pratelli M.;Pasqualetti M.
2019-01-01

Abstract

Serotonin (5-HT)-releasing fibers show substantial structural plasticity in response to genetically induced changes in 5-HT content. However, whether 5-HT fibers appear malleable also following clinically relevant variations in 5-HT levels that may occur throughout an individual's life has not been investigated. Here, using confocal imaging and 3D modeling analysis in Tph2GFP knock-in mice, we show that chronic administration of the antidepressant fluoxetine dramatically affects the morphology of 5-HT fibers innervating the dorsal and ventral hippocampus resulting in a reduced density of fibers. Importantly, GFP fluorescence levels appeared unaffected in the somata of both dorsal and median raphe 5-HT neurons, arguing against potential fluoxetine-mediated down-regulation of the Tph2 promoter driving GFP expression in the Tph2GFP mouse model. In keeping with this notion, mice bearing the pan-serotonergic driver Pet1-Cre partnered with a Cre-responsive tdTomato allele also showed similar morphological alterations in hippocampal 5-HT circuitry following chronic fluoxetine treatment. Moreover 5-HT fibers innervating the cortex showed proper density and no overt morphological disorganization, indicating that the reported fluoxetine-induced rearrangements were hippocampus specific. On the whole, these data suggest that 5-HT fibers are shaped in response to subtle changes of 5-HT homeostasis and may provide a structural basis by which antidepressants exert their therapeutic effect.
2019
Nazzi, S.; Maddaloni, G.; Pratelli, M.; Pasqualetti, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/995821
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 14
social impact